OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13311–13319

Efficient absorption of visible radiation by gap plasmon resonators

Michael G. Nielsen, Anders Pors, Ole Albrektsen, and Sergey I. Bozhevolnyi  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 13311-13319 (2012)
http://dx.doi.org/10.1364/OE.20.013311


View Full Text Article

Enhanced HTML    Acrobat PDF (2556 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate experimentally a periodic array of differently-sized and circularly-shaped gap plasmon resonators (GPRs) with the average absorption ~94% for unpolarized light in the entire visible wavelength range (400-750nm). Finite-element simulations verify that the polarization insensitive broadband absorption originates from localized gap surface plasmons whose resonant excitations only weakly depend on the angle of incidence. Arrays of GPRs also exhibit enhanced local field intensities (~115) as revealed by scanning two-photon photoluminescence microscopy, that are spectrally correlated with the minima in corresponding linear reflection spectra.

© 2012 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures
(010.1030) Atmospheric and oceanic optics : Absorption

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 18, 2012
Revised Manuscript: May 22, 2012
Manuscript Accepted: May 22, 2012
Published: May 29, 2012

Citation
Michael G. Nielsen, Anders Pors, Ole Albrektsen, and Sergey I. Bozhevolnyi, "Efficient absorption of visible radiation by gap plasmon resonators," Opt. Express 20, 13311-13319 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-13311


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  2. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  3. H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79AG21 substrate,” Nat. Sci. Rep.1, 1–5 (2011).
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  5. V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano5(12), 10055–10064 (2011). [CrossRef] [PubMed]
  6. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett.12(1), 440–445 (2012). [CrossRef] [PubMed]
  7. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun.2, 517 (2011). [CrossRef] [PubMed]
  8. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010). [CrossRef]
  9. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  10. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011). [CrossRef]
  11. S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011). [CrossRef]
  12. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11(10), 4366–4369 (2011). [CrossRef] [PubMed]
  13. J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett.100(11), 113305 (2012). [CrossRef]
  14. M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express19(20), 19310–19322 (2011). [CrossRef] [PubMed]
  15. S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators,” Opt. Express15(17), 10869–10877 (2007). [CrossRef] [PubMed]
  16. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B79(3), 035401 (2009). [CrossRef]
  17. T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys.10(10), 105008 (2008). [CrossRef]
  18. T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett.10(1), 291–295 (2010). [CrossRef] [PubMed]
  19. T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010). [CrossRef] [PubMed]
  20. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B78(20), 205405 (2008). [CrossRef]
  21. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.)23(45), 5410–5414 (2011). [CrossRef] [PubMed]
  22. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett.37(6), 1038–1040 (2012). [CrossRef] [PubMed]
  23. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012). [CrossRef] [PubMed]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  25. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Demonstration of metal-dielectric negative index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B23(3), 434–438 (2006). [CrossRef]
  26. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett.94(1), 017402 (2005). [CrossRef] [PubMed]
  27. J. Beermann, S. M. Novikov, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express16(22), 17302–17309 (2008). [CrossRef] [PubMed]
  28. M. G. Nielsen, A. Pors, R. B. Nielsen, A. Boltasseva, O. Albrektsen, and S. I. Bozhevolnyi, “Demonstration of scattering suppression in retardation-based plasmonic nanoantennas,” Opt. Express18(14), 14802–14811 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited