OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13326–13336

Small-polaron based holograms in LiNbO3 in the visible spectrum

H. Brüning, V. Dieckmann, B. Schoke, K.-M. Voit, M. Imlau, G. Corradi, and C. Merschjann  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 13326-13336 (2012)
http://dx.doi.org/10.1364/OE.20.013326


View Full Text Article

Enhanced HTML    Acrobat PDF (879 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diffraction efficiency, relaxation behavior and dependence on pump-beam intensity of small-polaron based holograms are studied in thermally reduced, nominally undoped lithium niobate in the visible spectrum (λ = 488 nm). The pronounced phase gratings with diffraction efficiency up to η = (10.8 ± 1.0)% appeared upon irradiation by single ns-laser pulses (λ = 532 nm) and are comprehensively assigned to the optical formation of spatially modulated densities of small bound Nb Li 4 + electron polarons, Nb Li 4 + : Nb Nb 4 + electron bipolarons, and O hole polarons. A remarkable quadratic dependence on the pump-beam intensity is discovered for the recording configuration K || c-axis and can be explained by the electro-optic contribution of the optically generated small bound polarons. We discuss the build-up of local space-charge fields via small-polaron based bulk photovoltaic currents.

© 2012 OSA

OCIS Codes
(090.7330) Holography : Volume gratings
(160.3730) Materials : Lithium niobate
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(190.4400) Nonlinear optics : Nonlinear optics, materials
(160.5335) Materials : Photosensitive materials

ToC Category:
Holography

History
Original Manuscript: April 27, 2012
Revised Manuscript: May 23, 2012
Manuscript Accepted: May 23, 2012
Published: May 29, 2012

Citation
H. Brüning, V. Dieckmann, B. Schoke, K.-M. Voit, M. Imlau, G. Corradi, and C. Merschjann, "Small-polaron based holograms in LiNbO3 in the visible spectrum," Opt. Express 20, 13326-13336 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-13326


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Imlau, H. Brüning, B. Schoke, R.-S. Hardt, D. Conradi, and C. Merschjann, “Hologram recording via spatial density modulation of NbLi4+/5+ antisites in lithium niobate,” Opt. Express19, 15322–15338 (2011). [CrossRef] [PubMed]
  2. D. Emin, “Polaron” in McGraw-Hill Encyclopedia of Science and Technology, (McGraw-Hill, New York, 2007) 125
  3. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010). [CrossRef] [PubMed]
  4. C. Gu, Fu, and J.-R. Lien, “Correlation patterns and cross-talk noise in volume holographic optical correlators,” J. Opt. Soc. Am. A12, 861–868 (1995). [CrossRef]
  5. D. Sadot and E. Boimovich, “Tunable optical filters for dense wdm networks,” IEEE Commun. Mag.36, 50 –55 (1998). [CrossRef]
  6. Y. Qiu, K. B. Ucer, and R. T. Williams, “Formation time of a small electron polaron in LiNbO3: measurements and interpretation,” Phys. Status Solidi C2, 232–235 (2005). [CrossRef]
  7. O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys.: Condens. Matter.21, 123201 (2009). [CrossRef]
  8. O. F. Schirmer, “O− Bound small polarons in oxide materials,” J. Phys.: Condens. Matter18, R667–R704 (2006). [CrossRef]
  9. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451, 694–698 (2008). [CrossRef] [PubMed]
  10. O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small-polaron-based microscopic interpretation,” Phys. Rev. B83, 165106 (2011). [CrossRef]
  11. S. Torbruegge, M. Imlau, B. Schoke, C. Merschjann, O. F. Schirmer, S. Vernay, A. Gross, V. Wesemann, and D. Rytz, “Optically generated small electron and hole polarons in nominally undoped and Fe-doped KNbO3 investigated by transient absorption spectroscopy,” Phys. Rev. B78, 125112 (2008). [CrossRef]
  12. C. Merschjann, B. Schoke, and M. Imlau, “Influence of chemical reduction on the particular number densities of light–induced small electron and hole polarons in nominally pure LiNbO3,” Phys. Rev. B76, 085114 (2007). [CrossRef]
  13. J. Koppitz, O. F. Schirmer, and A. I. Kuznetsov, “Thermal dissociation of bipolarons in reduced undoped LiNbO3,” Europhys. Lett.4, 1055–1059 (1987). [CrossRef]
  14. C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgar, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter21, 015906 (2009). [CrossRef]
  15. F. Jermann and K. Buse, “Light-induced thermal gratings in LiNbO3:Fe,” Appl. Phys. B59, 437–443 (1994). [CrossRef]
  16. R. S. Weis and T. K. Gaylord, “Lithium niobate: summery of physical properties and crystal structure,” Appl. Phys. A37, 191–203 (1985). [CrossRef]
  17. G. Williams and D. C. Watts, “Non–symmetrical dielectric relaxation behaviour arising from a simple empirical decay function,” Trans. Faraday. Soc66, 80–85 (1970). [CrossRef]
  18. O. F. Schirmer, H.-J. Reyher, and M. Woehlecke, “Characterization of point defects in photorefractive oxide crystals by paramagnetic resonance methods” in Insulting Materials for Optoelectronics: New Developments, (World Scientific Publishing, Singapore, 1995), 93–124. [CrossRef]
  19. L. Hesselink, S. S. Orlov, A. Lie, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science282, 1089 (1998). [CrossRef] [PubMed]
  20. K. Buse, “Light-induced charge transport processes in photorefractive crystals II: Materials,” Appl. Phys. B64, 391–407 (1997). [CrossRef]
  21. M. Imlau, “Defects and photorefraction: A relation with mutual benefit,” Phys. Status Solidi A204, 642–652 (2007). [CrossRef]
  22. J. Imbrock, S. Wevering, K. Buse, and E. Krätzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B16, 1392–1397 (1999). [CrossRef]
  23. D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Stat. Sol. RRL2, 284–286 (2008). [CrossRef]
  24. O. Beyer, D. Maxein, T. Woike, and K. Buse, “Generation of small bound polarons in lithium niobate crystals on the subpicosecond time scale,” Appl. Phys. B83, 527–530 (2006). [CrossRef]
  25. V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen eds., Kramers-Kronig Relations in Optical Materials Research (Springer Verlag, 2005).
  26. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909 (1969).
  27. D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun.17, 332–335 (1976). [CrossRef]
  28. T. Fujiwara, M. Takahasi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett.35, 499–501 (1999). [CrossRef]
  29. C.-T. Chen, D. M. Kim, and D. von der Linde, “Efficient hologram recording in LiNbO3:Fe using optical pulses,” Appl. Phys. Lett.34, 321–324 (1979). [CrossRef]
  30. D. Maxein, J. Bückers, D. Haertle, and K. Buse, “Photorefraction in LiNbO3:Fe crystals with femtosecond pulses at 532 nm,” Appl. Phys. B95, 399–405 (2009) [CrossRef]
  31. C. Nölleke, J. Imbrock, and C. Denz, “Two-step holographic recording in photorefractive lithium niobate crystals using ultrashort laser pulses,” Appl. Phys. B95, 391–397 (2009). [CrossRef]
  32. M. Simon, F. Jermann, and E. Krätzig, “Photorefractive effects in LiNbO3:Fe, me at high light intensities,” Opt. Mat.4, 286 – 289 (1995). [CrossRef]
  33. O. F. Schirmer and D. von der Linde, “Two-photon and x-ray-induced Nb4+ and O− small polarons in LiNbO3,” Appl. Phys. Lett.33, 35 (1978). [CrossRef]
  34. D. von der Linde, O. F. Schirmer, and H. Kurz, “Intrinsic photorefractive effect of LiNbO3,” Appl. Phys. A15, 153–156 (1978).
  35. G. A. Brost, R. A. Motes, and J. R. Rotge, “Intensity-dependent absorption and photorefractive effects in barium titanate,” J. Opt. Soc. Am. B5, 1879–1885 (1988). [CrossRef]
  36. H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Communications49, 843–847 (1984). [CrossRef]
  37. Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett.78, 2944–2947 (1997). [CrossRef]
  38. S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys.105, 083102 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited