OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13337–13346

White-light generation using spatially-structured beams of femtosecond radiation

N. Kaya, J. Strohaber, A. A. Kolomenskii, G. Kaya, H. Schroeder, and H. A. Schuessler  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 13337-13346 (2012)
http://dx.doi.org/10.1364/OE.20.013337


View Full Text Article

Enhanced HTML    Acrobat PDF (1295 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We studied white-light generation in water using spatially- structured beams of femtosecond radiation. By changing the transverse spatial phase of an initial Gaussian beam with a 1D spatial light modulator to that of an Hermite-Gaussian (HGn,m) mode, we were able to generate beams exhibiting phase discontinuities and steeper intensity gradients. When the spatial phase of an initial Gaussian beam (showing no significant white-light generation) was changed to that of a HG01, or HG11 mode, significant amounts of white-light were produced. Because self-focusing is known to play an important role in white-light generation, the self-focusing lengths of the resulting transverse intensity profiles were used to qualitatively explain this production. Distributions of the laser intensity for beams having step-wise spatial phase variations were modeled using the Fresnel-Kirchhoff integral in the Fresnel approximation and found to be in good agreement with experiment.

© 2012 OSA

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.5940) Nonlinear optics : Self-action effects
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Ultrafast Optics

History
Original Manuscript: April 18, 2012
Revised Manuscript: May 19, 2012
Manuscript Accepted: May 19, 2012
Published: May 30, 2012

Citation
N. Kaya, J. Strohaber, A. A. Kolomenskii, G. Kaya, H. Schroeder, and H. A. Schuessler, "White-light generation using spatially-structured beams of femtosecond radiation," Opt. Express 20, 13337-13346 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-13337


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett.24(11), 584–587 (1970). [CrossRef]
  2. R. R. Alfano, The Supercontinuum Laser Source: Fundamentals with Updated References, 2nd ed. (Springer Science + Business Media, Inc., 2006).
  3. N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun.8(4), 285–288 (1973). [CrossRef]
  4. W. Lee Smith, P. Liu, and N. Bloembergen, “Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG: Nd laser,” Phys. Rev. A15(6), 2396–2403 (1977). [CrossRef]
  5. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett.8(1), 1–3 (1983). [CrossRef] [PubMed]
  6. G. Yang and Y. R. Shen, “Spectral broadening of ultrashort pulses in a nonlinear medium,” Opt. Lett.9(11), 510–512 (1984). [CrossRef] [PubMed]
  7. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett.57(18), 2268–2271 (1986). [CrossRef] [PubMed]
  8. P. B. Corkum and C. Rolland, “Femtosecond continua produced in gases,” IEEE J. Quantum Electron.25(12), 2634–2639 (1989). [CrossRef]
  9. F. A. Ilkov, L. Sh. Ilkova, and S. L. Chin, “Supercontinuum generation versus optical breakdown in CO(2) gas,” Opt. Lett.18(9), 681–683 (1993). [CrossRef] [PubMed]
  10. V. François, F. A. Ilkov, and S. L. Chin, “Experimental study of the supercontinuum spectral width evolution in CO2 gas,” Opt. Commun.99(3-4), 241–246 (1993). [CrossRef]
  11. G. S. He, G. C. Xu, Y. Cui, and P. N. Prasad, “Difference of spectral superbroadening behavior in Kerr-type and non-Kerr-type liquids pumped with ultrashort laser pulses,” Appl. Opt.32(24), 4507–4512 (1993). [CrossRef] [PubMed]
  12. A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentation and the white light continuum divergence,” Opt. Commun.129(3-4), 193–198 (1996). [CrossRef]
  13. J. H. Glownia, J. Misewich, and P. P. Sorokin, “Ultrafast ultraviolet pump-probe apparatus,” J. Opt. Soc. Am. B3(11), 1573–1579 (1986). [CrossRef]
  14. S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B70(S1), S247–S252 (2000). [CrossRef]
  15. T. Kobayashi and A. Shirakawa, “Tunable visible and near-infrared pulse generator in a 5 fs regime,” Appl. Phys. B70(S1), S239–S246 (2000). [CrossRef]
  16. T. Kobayashi, T. Saito, and H. Ohtani, “Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization,” Nature414(6863), 531–534 (2001). [CrossRef] [PubMed]
  17. P.-L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Opt. Express12(22), 5287–5295 (2004). [CrossRef] [PubMed]
  18. E. Hugonnot, M. Somekh, D. Villate, F. Salin, and E. Freysz, “Optical parametric chirped pulse amplification and spectral shaping of a continuum generated in a photonic band gap fiber,” Opt. Express12(11), 2397–2403 (2004). [CrossRef] [PubMed]
  19. K. R. Wilson and V. V. Yakovlev, “Ultrafast rainbow: tunable ultrashort pulses from a solid-state kilohertz system,” J. Opt. Soc. Am. B14(2), 444–448 (1997). [CrossRef]
  20. E. N. Glezer, Y. Siegal, L. Huang, and E. Mazur, “Laser-induced band-gap collapse in GaAs,” Phys. Rev. B Condens. Matter51(11), 6959–6970 (1995). [CrossRef] [PubMed]
  21. M. Wittmann and A. Penzkofer, “Spectral superbroadening of femtosecond laser pulses,” Opt. Commun.126(4-6), 308–317 (1996). [CrossRef]
  22. J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, “Observation of Pulse Splitting in Nonlinear Dispersive Media,” Phys. Rev. Lett.77(18), 3783–3786 (1996). [CrossRef] [PubMed]
  23. A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white light continuum,” Phys. Rev. Lett.80(20), 4406–4409 (1998). [CrossRef]
  24. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B16(4), 637–650 (1999). [CrossRef]
  25. A. Couairon and A. Mysyrowicz, “Femtosecond □lamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007). [CrossRef]
  26. J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975). [CrossRef]
  27. A. Dharmadhikari, F. Rajgara, D. Mathur, H. Schroeder, and J. Liu, “Efficient broadband emission from condensed media irradiated by low-intensity, unfocused, ultrashort laser light,” Opt. Express13(21), 8555–8564 (2005). [CrossRef] [PubMed]
  28. H. Schroeder, J. Liu, and S. Chin, “From random to controlled small-scale filamentation in water,” Opt. Express12(20), 4768–4774 (2004). [CrossRef] [PubMed]
  29. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  30. A. E. Siegman, Lasers (University Science Books, 1986), p. 645.
  31. J. Strohaber, G. Kaya, N. Kaya, N. Hart, A. A. Kolomenskii, G. G. Paulus, and H. A. Schuessler, “In situ tomography of femtosecond optical beams with a holographic knife-edge,” Opt. Express19(15), 14321–14334 (2011). [CrossRef] [PubMed]
  32. J. Peatross and M. Ware, “Physics of Light and Optics,” 2011 edition, available at optics.byu.edu .
  33. K. Cook, R. McGeorge, A. K. Kar, M. R. Taghizadeh, and R. A. Lamb, “Coherent array of white-light continuum filaments produced by diffractive microlenses,” Appl. Phys. Lett.86(2), 021105 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited