OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13357–13367

Drastic reduction of thermally induced depolarization in CaF2 crystals with [111] orientation

Ilya Snetkov, Anton Vyatkin, Oleg Palashov, and Efim Khazanov  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 13357-13367 (2012)
http://dx.doi.org/10.1364/OE.20.013357


View Full Text Article

Enhanced HTML    Acrobat PDF (2523 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The key importance of the sign of the stress-optic anisotropy ratio for reducing thermally induced depolarization in cubic crystals with 432, 4 ¯ 3m and m3m symmetry is addressed. A simple method for measuring the stress-optic anisotropy ratio (including its sign) was proposed and verified in CaF2 and TGG crystals by experiment. The ratio at room temperature for the wavelength 1076 nm was measured to be −0.47 and + 2.25, respectively. In crystals with a negative value of this parameter thermally induced depolarization may be reduced significantly by choosing crystal orientation. In a CaF2 crystal with the [111] orientation a 20-fold reduction of thermally induced depolarization as compared to the [001] orientation was obtained in experiment, which is very promising for using CaF2 as an active element in high-average-power lasers.

© 2012 OSA

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(140.6810) Lasers and laser optics : Thermal effects
(160.3380) Materials : Laser materials
(260.1440) Physical optics : Birefringence

ToC Category:
Materials

History
Original Manuscript: April 17, 2012
Revised Manuscript: May 16, 2012
Manuscript Accepted: May 16, 2012
Published: May 30, 2012

Citation
Ilya Snetkov, Anton Vyatkin, Oleg Palashov, and Efim Khazanov, "Drastic reduction of thermally induced depolarization in CaF2 crystals with [111] orientation," Opt. Express 20, 13357-13367 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-13357


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. W. Quelle., “Thermal distortion of diffraction-limited optical elements,” Appl. Opt.5(4), 633–637 (1966). [CrossRef] [PubMed]
  2. Y. A. Anan'ev, N. A. Kozlov, A. A. Mak, and A. I. Stepanov, “Thermal deformation of the resonator of a solid-state laser,” J. Appl. Spectrosc.5(1), 36–39 (1966). [CrossRef]
  3. J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys.41(9), 3656–3663 (1970). [CrossRef]
  4. G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett.17(5), 213–215 (1970). [CrossRef]
  5. W. Koechner, “Absorbed pump power, thermal profile and stresses in a cw pumped Nd:YAG crystal,” Appl. Opt.9(6), 1429–1434 (1970). [CrossRef] [PubMed]
  6. W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron.6(9), 557–566 (1970). [CrossRef]
  7. M. A. Karr, “Nd:YAIG laser cavity loss due to an internal Brewster polarizer,” Appl. Opt.10(4), 893–895 (1971). [CrossRef] [PubMed]
  8. W. Koechner and D. K. Rice, “Birefringence of YAG:Nd laser rods as a function of growth direction,” J. Opt. Soc. Am.61(6), 758–766 (1971). [CrossRef]
  9. I. B. Vitrishchak, L. N. Soms, and A. A. Tarasov, “On intrinsic polarizations of a resonator with thermally distorted active element,” Zh. Tekhn. Fiz. [J. Techn. Phys.]44, 1055–1062 (1974) (in Russian).
  10. W. Koechner, Solid-State Laser Engineering (Springer, Berlin, 1999).
  11. L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG: Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron.10(3), 350–351 (1980). [CrossRef]
  12. R. E. Joiner, J. Marburger, and W. H. Steier, “Elimination of stress-induced birefringence effects in single-crystal high-power laser windows,” Appl. Phys. Lett.30(9), 485–486 (1977). [CrossRef]
  13. J. F. Nye, Physical Properties of Crystals (Oxford University Press, London, 1964).
  14. C. A. Klein, “Optical distortion coefficient of 111oriented CaF2 windows at chemical laser wavelengths,” Appl. Phys. Lett.35(1), 52–54 (1979). [CrossRef]
  15. L. N. Soms and A. A. Tarasov, “Thermal strains in active elements of color-center lasers. I. Theory,” Sov. J. Quantum Electron.9(12), 1506–1509 (1979). [CrossRef]
  16. A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Termooptika tverdotel'nykh lazerov [Thermooptics of solid-state lasers] (Mashinostroenie, Leningrad, 1986). (in Russian)
  17. I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett.80(17), 3048–3050 (2002). [CrossRef]
  18. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt.41(3), 483–492 (2002). [CrossRef] [PubMed]
  19. I. Mukhin, O. Palashov, E. Khazanov, and I. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett.81(3), 90–94 (2005). [CrossRef]
  20. E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron.40(10), 1500–1510 (2004). [CrossRef]
  21. I. B. Mukhin and E. A. Khazanov, “Use of thin discs in Faraday isolators for high-average-power lasers,” Quantum Electron.34(10), 973–978 (2004). [CrossRef]
  22. E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett.27(9), 716–718 (2002). [CrossRef] [PubMed]
  23. M. A. Kagan and E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron.33(10), 876–882 (2003). [CrossRef]
  24. I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Properties of a thermal lens in laser ceramics,” Quantum Electron.37(7), 633–638 (2007). [CrossRef]
  25. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. Ikesue, and Y. L. Aung, “Experimental study of thermally induced depolarization in Nd:YAG ceramics,” Opt. Express13(16), 5983–5987 (2005). [CrossRef] [PubMed]
  26. A. A. Soloviev, I. L. Snetkov, V. V. Zelenogorsky, I. E. Kozhevatov, O. V. Palashov, and E. A. Khazanov, “Experimental study of thermal lens features in laser ceramics,” Opt. Express16(25), 21012–21021 (2008). [CrossRef] [PubMed]
  27. M. A. Kagan and E. A. Khazanov, “Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics,” Appl. Opt.43(32), 6030–6039 (2004). [CrossRef] [PubMed]
  28. A. A. Soloviev, I. L. Snetkov, and E. A. Khazanov, “Study of a thermal lens in thin laser-ceramics discs,” Quantum Electron.39(4), 302–308 (2009). [CrossRef]
  29. V. M. Mit'kin and O. Shaveleov, “Method of assessment of thermooptical constants P and Q of glasses,” Optiko-mechanicheskaya promishlennost [Optomechanical Industry]9, 26–29 (1973) (in Russian).
  30. E. M. Dianov, “Thermal distortion of laser cavity in case of rectangular garnet slab,” Kratkiye soobsheniya po fisike [Brief Commun. on Phys.]8, 67–75 (1971). (in Russian).
  31. “Data Sheet for Calcium Fluoride (Hellma Materials)” (2010), retrieved http://www.hellma-materials.com/html/seiten/output_adb_file.php?id=51 .
  32. “CaF2 Product Information Sheet (Corning Incorporated)” (2003), retrieved http://www.corning.com/docs/specialtymaterials/pisheets/H0607_CaF2_Product_Sheet.pdf .
  33. M. J. Weber, Handbook of Optical Materials, Laser and Optical Science and Technology Series (CRC PRESS, 2003).
  34. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron.35(8), 1116–1122 (1999). [CrossRef]
  35. D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron.36(4), 383–388 (2006). [CrossRef]
  36. A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B28(6), 1409–1415 (2011). [CrossRef]
  37. V. N. Kitaeva, E. V. Zharikov, and I. L. Chistyi, “The properties of crystals with garnet structure,” Phys. Status Solidi (A)92(2), 475–488 (1985). [CrossRef]
  38. A. G. Vyatkin and E. A. Khazanov, “Thermally induced depolarization in sesquioxide class m3 single crystals,” J. Opt. Soc. Am. B28(4), 805–811 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (1739 KB)     
» Media 2: MOV (2299 KB)     
» Media 3: MOV (1865 KB)     
» Media 4: MOV (1976 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited