OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13368–13389

Optical forces on cylinders near subwavelength slits: effects of extraordinary transmission and excitation of Mie resonances

F. J. Valdivia-Valero and M. Nieto-Vesperinas  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 13368-13389 (2012)
http://dx.doi.org/10.1364/OE.20.013368


View Full Text Article

Enhanced HTML    Acrobat PDF (3409 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the optical forces on particles, either dielectric or metallic, in or out their Mie resonances, near a subwavelength slit in extraordinary transmission regime. Calculations are two-dimensional, so that those particles are infinite cylinders. Illumination is with p-polarization. We show that the presence of the slit enhances by two orders of magnitude the transversal forces of optical tweezers from a beam alone. In addition, a drastically different effect of these particle resonances on the optical forces that they experience; namely, we demonstrate an enhancement of these forces, also of binding nature, at plasmon resonance wavelengths on metallic nanocylinders, whereas dielectric cylinders experience optical forces that decrease at wavelengths exciting their whispering gallery modes. Particles located at the entrance of the slit are easily bound to apertures due to the coincidence in the forward direction of scattering and gradient forces, but those particles at the exit of the slit suffer a competition between forward scattering force components and backward gradient forces which make more complex the bonding or antibonding nature of the resulting mechanical action.

© 2012 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1940) Diffraction and gratings : Diffraction
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: March 22, 2012
Revised Manuscript: April 25, 2012
Manuscript Accepted: April 25, 2012
Published: May 30, 2012

Citation
F. J. Valdivia-Valero and M. Nieto-Vesperinas, "Optical forces on cylinders near subwavelength slits: effects of extraordinary transmission and excitation of Mie resonances," Opt. Express 20, 13368-13389 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-13368


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11, 288–290 (1986). [CrossRef] [PubMed]
  2. K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett.83, 4534–4537 (1999). [CrossRef]
  3. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5, 915–919 (2009). [CrossRef]
  4. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5, 349–356 (2011). [CrossRef]
  5. Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1,064nm laser tweezers using microfluorometry,” Biophys. J.71, 2158–2167 (1996). [CrossRef] [PubMed]
  6. H. Yin, M. D. Wang, K. Svoboda, R. Landick, S. M. Block, and J. Gelles, “Transcripting against an applied force,” Science270, 1653–1657 (1995). [CrossRef] [PubMed]
  7. T. T. Perkins, D. E. Smith, R. G. Larson, and S. Chu, “,Stretching of a single tethered polymer in a uniform flow” Science268, 83–87 (1990). [CrossRef]
  8. M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Phil. Trans. R. Soc. Lond. A362, 719–737 (2004). [CrossRef]
  9. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev.37, 42–55 (2008). [CrossRef] [PubMed]
  10. P. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett.25, 1065–1067 (2000). [CrossRef]
  11. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010). [CrossRef]
  12. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998). [CrossRef]
  13. N. García, V. Celli, and M. Nieto-Vesperinas, “Exact multiple scattering of light from surfaces,” Opt. Commun.30, 279–281 (1979). [CrossRef]
  14. A. García-Martín, J. A. Torres, J. J. Sáenz, and M. Nieto-Vesperinas, “Transition from diffusive to localized regimes in surface-corrugated waveguides,” Appl. Phys. Lett.71, 1912–1914 (1997). [CrossRef]
  15. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun.239, 61–66 (2004). [CrossRef]
  16. H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12, 3629–3651 (2004). [CrossRef] [PubMed]
  17. A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag.54, 1632–1643 (2006). [CrossRef]
  18. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002). [CrossRef] [PubMed]
  19. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett.95, 103901 (2005). [CrossRef] [PubMed]
  20. J. Gómez-Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).
  21. A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett.95, 052103 (2009). [CrossRef]
  22. K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett.102, 013904 (2009). [CrossRef] [PubMed]
  23. D. Ates, A. O. Cakmak, E. Colak, R. Zhao, C. M. Soukoulis, and E. Ozbay, “Transmission enhancement through deep subwavelength apertures using connected split ring resonators,” Opt. Express18, 3952–3966 (2010). [CrossRef] [PubMed]
  24. Y. Q. Ye and Y. Jin, “Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film,” Phys. Rev. E80, 036606 (2009). [CrossRef]
  25. E. Di Gennaro, I. Gallina, A. Andreone, G. Castaldi, and V. Galdi, “Experimental evidence of cut-wire-induced enhanced transmission of transverse-electric fields through sub-wavelength slits in a thin metallic screen,” Opt. Express18, 26769–26774 (2010). [CrossRef]
  26. B. R. Johnson, “Theory of morphology-dependent resonances: shape resonances and width formulas,” J. Opt. Soc. Am. A10, 343–352 (1993). [CrossRef]
  27. B. R. Johnson, “Morphology-dependent resonances of a dielectric sphere on a conducting plane,” J. Opt. Soc. Am. A11, 2055–2064 (1994). [CrossRef]
  28. K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003). [CrossRef] [PubMed]
  29. J. R. Arias-González and M. Nieto-Vesperinas, “Near-field distributions of resonant modes in small dielectric objects on flat surfaces,” Opt. Lett.25, 782–784 (2000). [CrossRef]
  30. J. R. Arias-González and M. Nieto-Vesperinas, “Resonant near-field eigenmodes of nanocylinders on flat surfaces under both homogeneous and inhomogeneous lightwave excitation,” J. Opt. Soc. Am. A18, 657–665 (2001). [CrossRef]
  31. V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett.85, 5508–5510 (2004). [CrossRef]
  32. Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett.31, 389–391 (2006). [CrossRef] [PubMed]
  33. S. Deng, W. Cai, and V. N. Astratov, “Numerical study of light propagation via whispering gallery modes in microcylinder coupled resonator optical waveguides,” Opt. Express12, 6468–6480 (2004). [CrossRef] [PubMed]
  34. S. V. Boriskina, “Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules,” Opt. Lett.31, 338–340 (2006). [CrossRef] [PubMed]
  35. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98, 011101 (2005). [CrossRef]
  36. S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B73, 035403 (2006). [CrossRef]
  37. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science + Business Media LLC, New York, 2007).
  38. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev.2, 136–159 (2008). [CrossRef]
  39. F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Enhanced transmission through subwavelength apertures by excitation of particle localized plasmons and nanojets,” Opt. Express19, 11545–11557 (2011). [CrossRef] [PubMed]
  40. F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Resonance excitation and light concentration in sets of dielectric nanocylinders in front of a subwavelength aperture. Effects on extraordinary transmission,” Opt. Express18, 6740–6754 (2010). [CrossRef] [PubMed]
  41. F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Propagation of particle plasmons in sets of metallic nanocylinders at the exit of subwavelength slits,” J. Nanophotonics5, 053520 (2011). [CrossRef]
  42. J. R. Arias-González, M. Nieto-Vesperinas, and M. Lester, “Modeling photonic force microscopy with metallic particles under plasmon eigenmode excitation,” Phys. Rev. B65, 115402 (2002). [CrossRef]
  43. P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B61, 14119–14127 (2000). [CrossRef]
  44. P. C. Chaumet and A. Rahmani, “Electromagnetic force and torque on magnetic and negative-index scatterers,” Opt. Express17, 2224–2234 (2009). [CrossRef] [PubMed]
  45. M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express18, 11428–11443 (2010). [CrossRef] [PubMed]
  46. L. A. Blanco and M. Nieto-Vesperinas, “Optical forces near subwavelength apertures in metal discs,” J. Opt. A: Pure Appl. Opt.9, S235–S238 (2007). [CrossRef]
  47. S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett.102, 113602 (2009). [CrossRef] [PubMed]
  48. J. L. García-Pomar and M. Nieto-Vesperinas, “Waveguiding, collimation and subwavelength concentration in photonic crystals,” Opt. Express13, 7997–8007 (2005). [CrossRef] [PubMed]
  49. N. Garcia, V. Celli, and M. Nieto-Vesperinas, “Exact multiple scattering of waves from random rough surfaces,” Opt. Commun.30, 279–281 (1979). [CrossRef]
  50. A. Madrazo, M. Nieto-Vesperinas, and N. García, “Exact calculation of Maxwell equations for a tip-metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B53, 3654–3657 (1996). [CrossRef]
  51. A. García-Martín, J. A. Torres, J. J. Sáenz, and M. Nieto-Vesperinas, “Transition from diffusive to localized regimes in surface corrugated optical waveguides,” Appl. Phys. Lett.71, 1912–1914 (1997). [CrossRef]
  52. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  53. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998).
  54. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005). [CrossRef] [PubMed]
  55. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999).
  56. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83, 2845–2848 (1999). [CrossRef]
  57. N. García and M. Nieto-Vesperinas, “Theory of electromagnetic wave transmission through metallic gratings of subwavelenght slits,” J. Opt. A: Pure Appl. Opt.9, 490–495 (2007). [CrossRef]
  58. N. García and M. Bai, “Theory of transmission of light by subwavelenght cylindrical holes in metallic films,” Opt. Express14, 10028–10042 (2006). [CrossRef] [PubMed]
  59. X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express16, 13560–13568 (2008). [CrossRef] [PubMed]
  60. D. C. Kohlgraf-Owens, S. Sukhov, and A. Dogariu, “Mapping the mechanical action of light,” Phys. Rev. A84, 011807(R) (2011). [CrossRef]
  61. M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering gallery-mode resonators,” Opt. Express13, 8286–8295 (2005). [CrossRef] [PubMed]
  62. J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics5, 531–534 (2011). [CrossRef]
  63. J. J. Sáenz, “Laser tractor beams,” Nat. Photonics5, 514–515 (2011). [CrossRef]
  64. A. Novitsky, C. W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett.107, 203601 (2011). [CrossRef] [PubMed]
  65. E. Shi, E. Xifr-Prez, F. J. Garca de Abajo, and F. Messeguer, “Looking through the mirror: optical microcavity-mirror image photonic interaction,” Opt. Express20, 11247–11255 (2012). [CrossRef]
  66. M. Lester, J. R. Arias-González, and M. Nieto-Vesperinas, “Fundamentals and model of photonic-force microscopy,” Opt. Lett.26, 707–709 (2001). [CrossRef]
  67. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 2005). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited