OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13409–13418

Cold atom guidance in a capillary using blue-detuned, hollow optical modes

Joseph A. Pechkis and Fredrik K. Fatemi  »View Author Affiliations

Optics Express, Vol. 20, Issue 12, pp. 13409-13418 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1008 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate guiding of cold 85Rb atoms through a 100-micron-diameter hollow core dielectric waveguide using cylindrical hollow modes. We have transported atoms using blue-detuned light in the 1st order, azimuthally-polarized TE01 hollow mode, and the 2nd order hollow modes (HE31, EH11, and HE12), and compared these results with guidance in the red-detuned, fundamental HE11 mode. The blue-detuned hollow modes confine atoms to low intensity along the capillary axis, far from the walls. We determine scattering rates in the guides by directly measuring the effect of recoil on the atoms. We observe higher atom numbers guided using red-detuned light in the HE11 mode, but a 10-fold reduction in scattering rate using the 2nd order modes, which have an r4 radial intensity profile to lowest order. We show that the red-detuned guides can be used to load atoms into the blue-detuned modes when both high atom number and low perturbation are desired.

© 2012 OSA

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(060.2310) Fiber optics and optical communications : Fiber optics
(230.7370) Optical devices : Waveguides
(020.1335) Atomic and molecular physics : Atom optics

ToC Category:
Atomic and Molecular Physics

Original Manuscript: April 17, 2012
Revised Manuscript: May 15, 2012
Manuscript Accepted: May 15, 2012
Published: May 31, 2012

Joseph A. Pechkis and Fredrik K. Fatemi, "Cold atom guidance in a capillary using blue-detuned, hollow optical modes," Opt. Express 20, 13409-13418 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102(20), 203902 (2009). [CrossRef] [PubMed]
  2. M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A83(6), 063830 (2011). [CrossRef]
  3. K. Dholakia, “Atom hosepipes,” Contemp. Phys.39(5), 351–369 (1998). [CrossRef]
  4. T. Takekoshi and R. J. Knize, “Optical guiding of atoms through a hollow-core photonic band-gap fiber,” Phys. Rev. Lett.98(21), 210404 (2007). [CrossRef] [PubMed]
  5. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett.75(18), 3253–3256 (1995). [CrossRef] [PubMed]
  6. M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A53(2), R648–R651 (1996). [CrossRef] [PubMed]
  7. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett.76(24), 4500–4503 (1996). [CrossRef] [PubMed]
  8. D. Müller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, “Guiding laser-cooled atoms in hollow-core fibers,” Phys. Rev. A61(3), 033411 (2000). [CrossRef]
  9. F. K. Fatemi, M. Bashkansky, and S. Moore, “Side-illuminated hollow-core optical fiber for atom guiding,” Opt. Express13(13), 4890–4895 (2005). [CrossRef] [PubMed]
  10. H. S. Pilloff, “Enhanced atom guiding in metal-coated, hollow-core optical fibers,” Opt. Commun.143(1-3), 25–29 (1997). [CrossRef]
  11. N. Friedman, A. Kaplan, and N. Davidson, “Dark optical traps for cold atoms,” Adv. At. Mol. Opt. Phys.48, 99–151 (2002). [CrossRef]
  12. M. L. Terraciano, S. E. Olson, and F. K. Fatemi, “Temperature dependent photon scattering in blue-detuned optical traps,” Phys. Rev. A84(2), 025402 (2011). [CrossRef]
  13. Y. Song, D. Milam, and W. T. Hill, “Long, narrow all-light atom guide,” Opt. Lett.24(24), 1805–1807 (1999). [CrossRef] [PubMed]
  14. S. E. Olson, M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Cold-atom confinement in an all-optical dark ring trap,” Phys. Rev. A76(6), 061404 (2007). [CrossRef]
  15. R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A59(3), R1750–R1753 (1999). [CrossRef]
  16. A. Kaplan, M. F. Andersen, T. Grunzweig, and N. Davidson, “Hyperfine spectroscopy of optically trapped atoms,” J. Opt. B Quantum Semiclassical Opt.7(8), R103–R125 (2005). [CrossRef]
  17. M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Faraday spectroscopy of atoms confined in a dark optical trap,” Phys. Rev. A77(6), 063417 (2008). [CrossRef]
  18. F. K. Fatemi, M. Bashkansky, E. Oh, and D. Park, “Efficient excitation of the TE01 hollow metal waveguide mode for atom guiding,” Opt. Express18(1), 323–332 (2010). [CrossRef] [PubMed]
  19. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).
  20. R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys.42, 95–170 (2000). [CrossRef]
  21. D. A. Steck, http://steck.us/alkalidata/
  22. F. K. Fatemi, “Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems,” Opt. Express19(25), 25143–25150 (2011). [CrossRef] [PubMed]
  23. T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal, or hybrid polarizations,” Opt. Commun.252(1-3), 12–21 (2005). [CrossRef]
  24. Y. Yirmiyahu, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures,” Opt. Express15(20), 13404–13414 (2007). [CrossRef] [PubMed]
  25. K. M. O’Hara, S. R. Granade, M. E. Gehm, and J. E. Thomas, “Loading dynamics of CO2 laser traps,” Phys. Rev. A63(4), 043403 (2001). [CrossRef]
  26. R. A. Cline, J. D. Miller, M. R. Matthews, and D. J. Heinzen, “Spin relaxation of optically trapped atoms by light scattering,” Opt. Lett.19(3), 207–209 (1994). [CrossRef] [PubMed]
  27. F. K. Fatemi and M. Bashkansky, “Cold atom guidance using a binary spatial light modulator,” Opt. Express14(4), 1368–1375 (2006). [CrossRef] [PubMed]
  28. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express16(22), 17972–17981 (2008). [CrossRef] [PubMed]
  29. A. A. Ishaaya, C. J. Hensley, B. Shim, S. Schrauth, K. W. Koch, and A. L. Gaeta, “Highly-efficient coupling of linearly- and radially-polarized femtosecond pulses in hollow-core photonic band-gap fibers,” Opt. Express17(21), 18630–18637 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited