OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13425–13439

Mode conversion in tapered submicron silicon ridge optical waveguides

Daoxin Dai, Yongbo Tang, and John E Bowers  »View Author Affiliations

Optics Express, Vol. 20, Issue 12, pp. 13425-13439 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3598 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The mode conversion in tapered submicron silicon ridge optical waveguides is investigated theoretically and experimentally. Two types of optical waveguide tapers are considered in this paper. One is a regular lateral taper for which the waveguide width varies while the etching depth is kept the same. The other is a so-called “bi-level” taper, which includes two layers of lateral tapers. Mode conversion between the TM fundamental mode and higher-order TE modes is observed in tapered submicron silicon-on-insulator ridge optical waveguides due to the mode hybridization resulting from the asymmetry of the cross section. Such a mode conversion could have a very high efficiency (close to 100%) when the taper is designed appropriately. This enables some applications e.g. polarizer, polarization splitting/rotation, etc. It is also shown that this kind of mode conversion could be depressed by carefully choosing the taper parameters (like the taper width, the etching depth, etc), which is important for the applications when low-loss propagation for the TM fundamental mode is needed.

© 2012 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Integrated Optics

Original Manuscript: April 9, 2012
Revised Manuscript: May 19, 2012
Manuscript Accepted: May 22, 2012
Published: May 31, 2012

Daoxin Dai, Yongbo Tang, and John E Bowers, "Mode conversion in tapered submicron silicon ridge optical waveguides," Opt. Express 20, 13425-13439 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Shani, C. Henry, R. Kistler, K. Orlowsky, and D. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett.55(23), 2389–2391 (1989). [CrossRef]
  2. R. Smith, C. Sullivan, G. Vawter, G. Hadley, J. Wendt, M. Snipes, and J. Klem, “Reduced coupling loss using a tapered-rib adiabatic-following fiber coupler,” IEEE Photon. Technol. Lett.5, 1053–1056 (1993).
  3. R. Zengerle, H. Bruckner, H. Olzhausen, and A. Kohl, “Low-loss fiber-chip coupling by buried laterally tapered InP/InGaAsP waveguide structure,” Electron. Lett.28(7), 631–632 (1992). [CrossRef]
  4. K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, “A simple laterally tapered waveguide for low-loss coupling to single-mode fibers,” IEEE Photon. Technol. Lett.5(3), 345–347 (1993). [CrossRef]
  5. T. Schwander, S. Fischer, A. Kramer, M. Laich, K. Luksic, G. Spatschek, and M. Warth, “Simple and low-loss fiber-to-chip coupling by integrated field-matching waveguide in InP,” Electron. Lett.29(4), 326–328 (1993). [CrossRef]
  6. L. Yang, D. Dai, B. Yang, Z. Sheng, and S. He, “Characteristic analysis of tapered lens fibers for light focusing and butt-coupling to a silicon rib waveguide,” Appl. Opt.48(4), 672–678 (2009). [CrossRef] [PubMed]
  7. D. Dai, S. He, and H. K. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol.24(6), 2428–2433 (2006). [CrossRef]
  8. A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Double-stage taper for coupling between SOI waveguides and single-mode fiber,” J. Lightwave Technol.26(24), 3860–3865 (2008). [CrossRef]
  9. Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron.27(3), 556–566 (1991). [CrossRef]
  10. R. S. Fan and R. B. Hooker, “Tapered polymer single-mode waveguides for mode transformation,” J. Lightwave Technol.17(3), 466–474 (1999). [CrossRef]
  11. K. W¨orhoff, P. V. Lambeck, and A. Driessen, “Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices,” J. Lightwave Technol.17(8), 1401–1407 (1999). [CrossRef]
  12. P. Sewell, T. M. Benson, and P. C. Kendall, “Rib waveguide spot-size transformers: modal properties,” J. Lightwave Technol.17(5), 848–856 (1999). [CrossRef]
  13. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett.41(14), 801–802 (2005). [CrossRef]
  14. D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on Si nanowire waveguides,” Electron. Lett.42(7), 400–402 (2006). [CrossRef]
  15. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010). [CrossRef]
  16. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express16(7), 4872–4880 (2008). [CrossRef] [PubMed]
  17. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006). [CrossRef]
  18. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express15(8), 4694–4704 (2007). [CrossRef] [PubMed]
  19. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12(21), 5269–5273 (2004). [CrossRef] [PubMed]
  20. C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express15(8), 5069–5076 (2007). [CrossRef] [PubMed]
  21. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005). [CrossRef] [PubMed]
  22. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  23. C. A. Barrios, V. R. Almeida, R. Panepucci, and M. Lipson, “Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices,” J. Lightwave Technol.21(10), 2332–2339 (2003). [CrossRef]
  24. Y. Tang, H.-W. Chen, S. Jain, J. D. Peters, U. Westergren, and J. E. Bowers, “50 Gb/s hybrid silicon traveling-wave electroabsorption modulator,” Opt. Express19(7), 5811–5816 (2011). [CrossRef] [PubMed]
  25. K. Mertens, B. Scholl, and H. Schmitt, “New highly efficient polarization converters based on hybrid supermodes,” J. Lightwave Technol.13(10), 2087–2092 (1995). [CrossRef]
  26. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express19(13), 12646–12651 (2011). [CrossRef] [PubMed]
  27. D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express18(26), 27404–27415 (2010). [CrossRef] [PubMed]
  28. R. S. Tummidi, T. G. Nguyen, A. Mitchell, and T. L. Koch, “An ultra-compact waveguide polarizer based on “anti-magic widths”,” 2011 8th IEEE International Conference on Group IV Photonics (GFP), London, UK, pp. 104–106, 14–16 Sept. 2011.
  29. D. Vermeulen, S. Selvaraja, W. A. D. De Cort, N. A. Yebo, E. Hallynck, K. De Vos, P. P. P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Van Thourhout, and R. Baets, “Efficient tapering to the fundamental Quasi-TM mode in asymmetrical waveguides,” ECIO 2010 (2010).
  30. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express19(11), 10940–10949 (2011). [CrossRef] [PubMed]
  31. M. Kohtoku, T. Hirono, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “Control of higher order leaky modes in deep-ridge waveguides and application to low-crosstalk arrayed waveguide gratings,” J. Lightwave Technol.22(2), 499–508 (2004). [CrossRef]
  32. D. Dai, J. He, and S. He, “Elimination of multimode effects in a silicon-on-insulator etched diffraction grating demultiplexer with bi-level taper structure,” IEEE J. Sel. Top. Quantum Electron.11(2), 439–443 (2005). [CrossRef]
  33. J. H. Schmid, B. Lamontagne, P. Cheben, A. Delâge, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode Converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett.19(11), 855–857 (2007). [CrossRef]
  34. FIMMWAVE/FIMMPROP, Photon Design Ltd, http://www.photond.com .
  35. D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical Mach-Zehnder Interferometer based on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett.24(8), 673–675 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited