OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13440–13450

Controllable entanglement preparations between atoms in spatially-separated cavities via quantum Zeno dynamics

Wen-An Li and Lian-Fu Wei  »View Author Affiliations

Optics Express, Vol. 20, Issue 12, pp. 13440-13450 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3112 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By using quantum Zeno dynamics, we propose a controllable approach to deterministically generate tripartite GHZ states for three atoms trapped in spatially separated cavities. The nearest-neighbored cavities are connected via optical fibers and the atoms trapped in two ends are tunably driven. The generation of the GHZ state can be implemented by only one step manipulation, and the EPR entanglement between the atoms in two ends can be further realized deterministically by Von Neumann measurement on the middle atom. Note that the duration of the quantum Zeno dynamics is controllable by switching on/off the applied external classical drivings and the desirable tripartite GHZ state will no longer evolve once it is generated. The robustness of the proposal is numerically demonstrated by considering various decoherence factors, including atomic spontaneous emissions, cavity decays and fiber photon leakages, etc. Our proposal can be directly generalized to generate multipartite entanglement by still driving the atoms in two ends.

© 2012 OSA

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: March 26, 2012
Revised Manuscript: May 12, 2012
Manuscript Accepted: May 15, 2012
Published: May 31, 2012

Wen-An Li and Lian-Fu Wei, "Controllable entanglement preparations between atoms in spatially-separated cavities via quantum Zeno dynamics," Opt. Express 20, 13440-13450 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. K. Lo, S. Popescu, and T. Spiller, Introduction to Quantum Computation and Information (World Scientific, Singapore, 1997).
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
  3. C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature (London)404, 247–255 (2000). [CrossRef]
  4. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67, 661–663 (1991). [CrossRef] [PubMed]
  5. D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys.58, 1131–1143 (1990). [CrossRef]
  6. M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59, 1829–1834 (1999). [CrossRef]
  7. X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A68, 024302 (2003). [CrossRef]
  8. K. Pahlke, X. B. Zou, and W. Mathis, “The generation of the Greenberger-Horne-Zeilinger state of four distant atoms conditioned on cavity decay,” J. Opt. B Quantum Semiclass. Opt.6, S142–S146 (2004). [CrossRef]
  9. D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger-Horne-Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A77, 062312 (2008). [CrossRef]
  10. L. F. Wei, Y. X. Liu, and F. Nori, “Generation and control of Greenberger-Horne-Zeilinger entanglement in superconducting circuits,” Phys. Rev. Lett.96, 246803 (2006). [CrossRef] [PubMed]
  11. R. J. Nelson, D. G. Cory, and S. Lloyd, “Experimental demonstration of Greenberger-Horne-Zeilinger correlations using nuclear magnetic resonance,” Phys. Rev. A61, 022106 (2000). [CrossRef]
  12. D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature (London)438, 639–642 (2005). [CrossRef]
  13. M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature (London)467, 570–573 (2010). [CrossRef]
  14. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.73, 565–582 (2001). [CrossRef]
  15. J. I. Cirac and P. Zoller, “Preparation of macroscopic superpositions in many-atom systems,” Phys. Rev. A50, R2799–R2802 (1994). [CrossRef] [PubMed]
  16. J. Hong and H.-W. Lee, “Quasideterministic generation of entangled atoms in a cavity,” Phys. Rev. Lett.89, 237901 (2002). [CrossRef] [PubMed]
  17. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett.78, 3221–3224 (1997). [CrossRef]
  18. S. van Enk, J. Cirac, and P. Zoller, “Ideal quantum communication over noisy channels: A Quantum optical implementation,” Phys. Rev. Lett.78, 4293–4296 (1997). [CrossRef]
  19. S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett.83, 5158–5161 (1999). [CrossRef]
  20. S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, “Long Distance, Unconditional Teleportation of Atomic States via Complete Bell State Measurements,” Phys. Rev. Lett.87, 167903 (2001). [CrossRef] [PubMed]
  21. A. S. Parkins and H. J. Kimble, “Position-momentum Einstein-Podolsky-Rosen state of distantly separated trapped atoms,” Phys. Rev. A61, 052104 (2000). [CrossRef]
  22. T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett.79, 5242–5245 (1997). [CrossRef]
  23. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett.96, 010503 (2006). [CrossRef] [PubMed]
  24. P. Peng and F.-L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A75, 062320 (2007). [CrossRef]
  25. Z.-Q. Yin and F.-L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A75, 012324 (2007). [CrossRef]
  26. S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A77, 014303 (2008). [CrossRef]
  27. Z.-B. Yang, S.-Y. Ye, A. Serafini, and S.-B. Zheng, “Distributed coherent manipulation of qutrits by virtual excitation processes,” J. Phys. B: At. Mol. Opt. Phys.43, 085506 (2010). [CrossRef]
  28. X.-Y. Lv, L.-G. Si, X.-Y. Hao, and X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A79, 052330 (2009). [CrossRef]
  29. S. B. Zheng, “Generation of Greenberger-Horne-Zeilinger states for multiple atoms trapped in separated cavities,” Eur. Phys. J. D54, 719–722 (2009). [CrossRef]
  30. A. Zheng and J. Liu, “Generation of an N-qubit Greenberger-Horne-Zeilinger state with distant atoms in bimodal cavities,” J. Phys. B: At. Mol. Opt. Phys.44, 165501 (2011). [CrossRef]
  31. X.-Y. Lv, P.-J. Song, J.-B. Liu, and X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express17, 14298–14311 (2009). [CrossRef]
  32. P.-B. Li and F.-L. Li, “Deterministic generation of multiparticle entanglement in a coupled cavity-fiber system,” Opt. Express19, 1207–1216 (2011) [CrossRef] [PubMed]
  33. P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A275, 12–19 (2000). [CrossRef]
  34. P. Facchi and S. Pascazio, “Quantum Zeno subspaces,” Phys. Rev. Lett.89, 080401 (2002). [CrossRef] [PubMed]
  35. P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys: Conf. Ser.196, 012017 (2009). [CrossRef]
  36. P. Facchi, S. Pascazio, A. Scardicchio, and L. S. Schulman, “Zeno dynamics yields ordinary constraints,” Phys. Rev. A65, 012108 (2002). [CrossRef]
  37. A. Luis, “Quantum-state preparation and control via the Zeno effect,” Phys. Rev. A63, 052112 (2001). [CrossRef]
  38. X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two-qubit quantum Zeno dynamics,” Phys. Rev. A77, 062339 (2008). [CrossRef]
  39. A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett.85, 1762–1765 (2000). [CrossRef] [PubMed]
  40. J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the Zeno effect,” Phys. Rev. A70, 062302 (2004). [CrossRef]
  41. X.-Q. Shao, L. Chen, S. Zhang, and K.-H. Yeon, “Fast CNOT gate via quantum Zeno dynamics,” J. Phys. B: At. Mol. Opt. Phys.42, 165507 (2009). [CrossRef]
  42. J. D. Franson, T. B. Pittman, and B. C. Jacobs, “Zeno logic gates using microcavities,” J. Opt. Soc. Am. B24, 209–213 (2007). [CrossRef]
  43. L. F. Wei, Yu-xi Liu, and F. Nori, “Testing Bell’s inequality in a constantly coupled Josephson circuit by effective single-qubit operations,” Phys. Rev. B72, 104516 (2005). [CrossRef]
  44. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A71, 013817 (2005). [CrossRef]
  45. J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A67, 033806 (2003). [CrossRef]
  46. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett.91, 043902 (2003). [CrossRef] [PubMed]
  47. K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength GigaHertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron.40, 900–908 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited