OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13451–13456

Optimizing the net reflectivity of point-by-point fiber Bragg gratings: the role of scattering loss

Robert J. Williams, Nemanja Jovanovic, Graham D. Marshall, Graham N. Smith, M. J. Steel, and Michael J. Withford  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 13451-13456 (2012)
http://dx.doi.org/10.1364/OE.20.013451


View Full Text Article

Enhanced HTML    Acrobat PDF (898 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an experimental and theoretical analysis of the influence of scattering losses on the net reflectivity of fiber Bragg gratings inscribed with a femtosecond laser and the point-by-point technique. We demonstrate that the ratio of the coupling strength coefficient to the scattering loss coefficient varies significantly with the inscribing laser pulse energy, and highlight that an optimal pulse-energy range exists for achieving high-reflectivity gratings. These results are critical for exploiting high power fiber laser opportunities based on point-by-point gratings.

© 2012 OSA

OCIS Codes
(320.2250) Ultrafast optics : Femtosecond phenomena
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 27, 2012
Revised Manuscript: May 21, 2012
Manuscript Accepted: May 23, 2012
Published: May 31, 2012

Citation
Robert J. Williams, Nemanja Jovanovic, Graham D. Marshall, Graham N. Smith, M. J. Steel, and Michael J. Withford, "Optimizing the net reflectivity of point-by-point fiber Bragg gratings: the role of scattering loss," Opt. Express 20, 13451-13456 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-13451


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004). [CrossRef]
  2. E. Wikszak, J. Burghoff, M. Will, S. Nolte, A. Tunnermann, and T. Gabler, “Recording of fiber Bragg gratings with femtosecond pulses using a 'point by point' technique,” in Conference on Lasers and Electro-Optics (CLEO)(Optical Society of America, 2004), p. CThM7.
  3. J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev., Early posting (2012).
  4. Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006). [CrossRef] [PubMed]
  5. N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007). [CrossRef] [PubMed]
  6. R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, “All-optical, actively Q-switched fiber laser,” Opt. Express 18(8), 7714–7723 (2010). [CrossRef] [PubMed]
  7. R. Goto, R. J. Williams, N. Jovanovic, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Linearly polarized fiber laser using a point-by-point Bragg grating in a single-polarization photonic bandgap fiber,” Opt. Lett. 36(10), 1872–1874 (2011). [CrossRef] [PubMed]
  8. N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009). [CrossRef] [PubMed]
  9. Y. Lai, K. Zhou, K. Sugden, and I. Bennion, “Point-by-point inscription of first-order fiber Bragg grating for C-band applications,” Opt. Express 15(26), 18318–18325 (2007). [CrossRef] [PubMed]
  10. R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett. 36(15), 2988–2990 (2011). [CrossRef] [PubMed]
  11. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010). [CrossRef] [PubMed]
  12. M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008). [CrossRef] [PubMed]
  13. J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express 19(1), 325–341 (2011). [CrossRef] [PubMed]
  14. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997). [CrossRef]
  15. C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005). [CrossRef] [PubMed]
  16. C. Lu, J. Cui, and Y. Cui, “Reflection spectra of fiber Bragg gratings with random fluctuations,” Opt. Fiber Technol. 14(2), 97–101 (2008). [CrossRef]
  17. M. Janos, J. Canning, and M. G. Sceats, “Incoherent scattering losses in optical fiber Bragg gratings,” Opt. Lett. 21(22), 1827–1829 (1996). [CrossRef] [PubMed]
  18. D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited