OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13457–13469

High-order nonlinear optical response of a polymer nanocomposite film incorporating semiconducotor CdSe quantum dots

Xiangming Liu, Yusuke Adachi, Yasuo Tomita, Juro Oshima, Takuya Nakashima, and Tsuyoshi Kawai  »View Author Affiliations

Optics Express, Vol. 20, Issue 12, pp. 13457-13469 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (984 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on observation of high-order optical nonlinearities in our recently developed photopolymerizable semiconductor CdSe quantum dot (QD)-polymer nanocomposite films at various volume fractions of CdSe QDs as high as 0.91 vol.% (3.6 wt.%). We performed Z-scan and degenerate multi-wave mixing (DMWM) measurements using a 532-nm picosecond laser delivering single 35 ps pulses at a repetition rate of 10 Hz. Using the uniformly cured polymer nanocomposite films, we observed the third- and fifth-order nonlinear optical effects in closed-aperture Z-scan measurements by which it was found that saturable nonlinear absorption (light-induced transparency) and large negative nonlinear refraction were induced. We also measured dependences of the effective third- and fifth-order nonlinear refraction constants on CdSe QD volume fraction. Based on the Maxwell-Garnett model, we estimated the third- and fifth-order nonlinear optical susceptibilities of CdSe QD and discussed a contribution of the third-order effect to the fifth-order one due to the cascaded (local-field) effect. Coexistence of the third- and fifth-order nonlinear refraction was also confirmed by DMWM.

© 2012 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(160.5470) Materials : Polymers
(160.6000) Materials : Semiconductor materials
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(190.4223) Nonlinear optics : Nonlinear wave mixing
(160.4236) Materials : Nanomaterials
(160.5335) Materials : Photosensitive materials

ToC Category:
Nonlinear Optics

Original Manuscript: April 3, 2012
Revised Manuscript: April 30, 2012
Manuscript Accepted: April 30, 2012
Published: May 31, 2012

Xiangming Liu, Yusuke Adachi, Yasuo Tomita, Juro Oshima, Takuya Nakashima, and Tsuyoshi Kawai, "High-order nonlinear optical response of a polymer nanocomposite film incorporating semiconducotor CdSe quantum dots," Opt. Express 20, 13457-13469 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Tomita, “Holographic nanoparticle-photopolymer composites,” in H. S. Nalwa, ed., Encyclopedia of Nanoscience and Nanotechnology15 (American Scientific Publishers, Valencia, 2011), 191–205 and references therein.
  2. Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett.30(8), 839–841 (2005). [CrossRef] [PubMed]
  3. Y. Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle--polymer composite films,” Opt. Lett.33(15), 1750–1752 (2008). [CrossRef] [PubMed]
  4. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO(2) nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express14(26), 12712–12719 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-12712 . [CrossRef] [PubMed]
  5. E. Hata, K. Mitsube, K. Momose, and Y. Tomita, “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization,” Opt. Mater. Express1(2), 207–222 (2011), http://www.opticsinfobase.org/ome/abstract.cfm?uri=ome-1-2-207 . [CrossRef]
  6. M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. D. Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett.105(12), 123904 (2010). [CrossRef] [PubMed]
  7. J. Klepp, C. Pruner, Y. Tomita, C. Plonka-Spehr, P. Geltenbort, S. Ivanov, G. Manzin, K. H. Andersen, J. Kohlbrecher, M. A. Ellabban, and M. Fally, “Diffraction of slow neutrons by holographic SiO2 nanoparticlepolymer composite gratings,” Phys. Rev. A84(1), 013621 (2011). [CrossRef]
  8. L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots (Springer, Berlin, 1998).
  9. X. Liu, Y. Tomita, J. Oshima, K. Chikama, K. Matsubara, T. Nakashima, and T. Kawai, “Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%,” Appl. Phys. Lett.95(26), 261109 (2009). [CrossRef]
  10. Y. Kayanuma, “Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape,” Phys. Rev. B Condens. Matter38(14), 9797–9805 (1988). [CrossRef] [PubMed]
  11. S. Schumitt-Rink, D. A. B. Miller, and D. S. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B35(15), 8113–8125 (1987). [CrossRef]
  12. G. P. Banfi, V. Degiorgio, and D. Ricard, “Nonlinear optical properties of semiconductor nanocrystals,” Adv. Phys.47(3), 447–510 (1998) (and references therein). [CrossRef]
  13. R. E. Slusher and B. J. Eggleton, eds., Nonlinear Photonic Crystals (Springer, Berlin, 2003).
  14. Y. Tomita, “Holographic manipulation of nanoparticle-distribution morphology in photopolymers and its applications to volume holographic recording and nonlinear photonic crystals,” OSA Trends Opt. Photonics Ser.99, 274–280 (2005).
  15. N. Peyghambarian, B. Fluegel, D. Hulin, A. Migus, M. Joffre, A. Antonetti, S. W. Koch, and M. Lindberg, “Femtosecond optical nonlinearities of CdSe quantum dots,” IEEE J. Quantum Electron.25(12), 2516–2522 (1989). [CrossRef]
  16. S. H. Park, R. A. Morgan, Y. Z. Hu, M. Lindberg, S. W. Koch, and N. Peyghambarian, “Nonlinear optical properties of quantum-confined CdSe microcrystallites,” J. Opt. Soc. Am. B7(10), 2097–2105 (1990). [CrossRef]
  17. S. H. Park, M. P. Casey, and J. Falk, “Nonlinear optical properties of CdSe quantum dots,” J. Appl. Phys.73(12), 8041–8045 (1993). [CrossRef]
  18. I. Gerdova and A. Haché, “Third-order non-linear spectroscopy of CdSe and CdSe/ZnS core shell quantum dots,” Opt. Commun.246(1–3), 205–212 (2005). [CrossRef]
  19. J. Seo, S. Ma, Q. Yang, L. Creekmore, R. Battle, H. Brown, A. Jackson, T. Skyles, B. Tabibi, W. Yu, S. Jung, and M. Namkung, “Large resonant third-order optical nonlinearity of CdSe nanocrystal quantum dots,” J. Phys.: Conf. Ser.38, 91–94 (2006). [CrossRef]
  20. S. M. Ma, J. T. Seo, Q. Yang, R. Battle, H. Brown, K. Lee, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, S. S. Jung, W. Yu, and M. Namkung, “Third-order nonlinear susceptibility and hyperpolarizability of CdSe nanocrystals with femtosecond excitation,” J. Korean Phys. Soc.48(6), 1379–1384 (2006).
  21. N. Venkatram, R. Sathyavathi, and D. N. Rao, “Size dependent multiphoton absorption and refraction of CdSe nanoparticles,” Opt. Express15(19), 12258–12263 (2007). [CrossRef] [PubMed]
  22. V. S. Dneprovskii, E. A. Zhukov, D. A. Kabanin, V. L. Lyaskovskii, A. V. Rakova, and T. Wumaier, “Nonlinear absorption and refraction of light in a colloidal solution of CdSe/ZnS quantum dots upon two-photon resonant excitation,” Phys. Solid State49(2), 366–370 (2007). [CrossRef]
  23. C. Gan, Y. Zhang, S. W. Liu, Y. Wang, and M. Xiao, “Linear and nonlinear optical refractions of CR39 composite with CdSe nanocrystals,” Opt. Mater.30(9), 1440–1445 (2008). [CrossRef]
  24. J. Yumoto, H. Shinojima, N. Uesugi, K. Tsunetomo, H. Nasu, and Y. Osaka, “Optical nonlinearity of CdSe microcrystallites in a sputtered SiO2 film,” Appl. Phys. Lett.57(23), 2393–2395 (1990). [CrossRef]
  25. H. Song, Y. Zhai, Z. Zhou, Z. Hao, and L. Zhou, “Optical nonlinearity of CdSe and CdSe-C60 quantum dot,” Mod. Phys. Lett. B22(32), 3207–3213 (2008). [CrossRef]
  26. S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron.23(12), 2089–2094 (1987). [CrossRef]
  27. L. H. Acioli, A. S. L. Gomes, and J. R. Rios Leite, “Measurement of high-order optical nonlinear susceptibilities in semiconductor-doped glasses,” Appl. Phys. Lett.53(19), 1788–1790 (1988). [CrossRef]
  28. L. H. Acioli, A. S. L. Gomes, J. R. Rios Leite, and C. B. De Araujo, “ultrafast χ(3)-related processes in semiconductor doped glasses,” IEEE J. Quantum Electron.26(7), 1277–1284 (1990). [CrossRef]
  29. G. P. Banfi, V. Degiorgio, and H. M. Tan, “Optical nonlinearity of semiconductor-doped glasses at frequencies below the band gap: the role of free carriers,” J. Opt. Soc. Am. B12(4), 621–628 (1995). [CrossRef]
  30. W. Schmid, T. Vogtmann, and M. Schwoere, “A modulation technique for measuring the optical susceptibility χ(5) by degenerate four-wave mixing,” Opt. Commun.121(1–3), 55–62 (1995). [CrossRef]
  31. K. S. Bindra and A. K. Kar, “Role of femtosecond pulses in distinguishing third- and fifth-order nonlinearity for semiconductor-doped glasses,” Appl. Phys. Lett.79(23), 3761–3763 (2001). [CrossRef]
  32. Y. Chen, K. Beckwitt, F. W. Wise, B. G. Aitken, J. S. Sanghera, and I. D. Aggarwal, “Measurement of fifth- and seventh-order nonlinearities of glasses,” J. Opt. Soc. Am. B23(2), 347–352 (2006). [CrossRef]
  33. N. Venkatram, D. N. Rao, and M. A. Akundi, “Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles,” Opt. Express13(3), 867–872 (2005). [CrossRef] [PubMed]
  34. J. He, J. Mi, H. Li, and W. Ji, “Observation of interband two-photon absorption saturation in CdS nanocrystals,” J. Phys. Chem. B109(41), 19184–19187 (2005). [CrossRef] [PubMed]
  35. L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Two-photon absorption in CdTe quantum dots,” Opt. Express13(17), 6460–6467 (2005). [CrossRef] [PubMed]
  36. L. Pan, N. Tamai, K. Kamada, and S. Deki, “Nonlinear optical properties of thiol-capped CdTe quantum dots in nonresonant region,” Appl. Phys. Lett.91(5), 051902 (2007). [CrossRef]
  37. I. Dancus, V. I. Vlad, A. Petris, N. Gaponik, V. Lesnyak, and A. Eychmüller, “Saturated near-resonant refractive optical nonlinearity in CdTe quantum dots,” Opt. Lett.35(7), 1079–1081 (2010). [CrossRef] [PubMed]
  38. M. D. Dvorak, B. L. Justus, and A. D. Berry, “Pump/probe Z-scan studies of GaAs nanocrystals grown in porous glass,” Opt. Commun.116(1–3), 149–152 (1995). [CrossRef]
  39. B. Liu, H. Li, C. H. Chew, W. Que, Y. L. Lam, C. H. Kam, L. M. Gan, and G. Q. Xu, “PbS–polymer nanocomposite with third-order nonlinear optical response in femtosecond regime,” Mater. Lett.51(6), 461–469 (2001). [CrossRef]
  40. H. S. Kim, M. H. Lee, N. C. Jeong, S. M. Lee, B. K. Rhee, and K. B. Yoon, “Very high third-order nonlinear optical activities of intrazeolite PbS quantum dots,” J. Am. Chem. Soc.128(47), 15070–15071 (2006). [CrossRef] [PubMed]
  41. E. L. Falcão-Filho, B. de Araújo, J. J. Rodrigues, and Jr., “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B24(12), 2948–2956 (2007).
  42. D. Rativa, R. E. de Araujo, and A. S. L. Gomes, “Nonresonant high-order nonlinear optical properties of silver nanoparticles in aqueous solution,” Opt. Express16(23), 19244–19252 (2008). [CrossRef] [PubMed]
  43. E. Koudoumas, F. Dong, M. D. tzatzadaki, S. Couris, and S. Leach, “High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime,” J. Phys. At. Mol. Opt. Phys.29(20), L773–L778 (1996). [CrossRef]
  44. E. Koudoumas, F. Dong, S. Couris, and S. Leach, “High order nonlinear optical response of fullerene solutions in the nanosecond regime,” Opt. Commun.138(4–6), 301–304 (1997). [CrossRef]
  45. K. Dolgaleva, H. Shin, and R. W. Boyd, “Observation of a microscopic cascaded contribution to the fifth-order nonlinear susceptibility,” Phys. Rev. Lett.103(11), 113902 (2009). [CrossRef] [PubMed]
  46. B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, “Nonlinear optical properties of 2,4,5-Trimethoxy-4-nitrochalcone: observation of two-photon-induced excited-state nonlinearities,” Opt. Express17(2), 1126–1135 (2009). [CrossRef] [PubMed]
  47. F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids274(1–3), 232–237 (2000). [CrossRef]
  48. Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett.91(22), 221902 (2007). [CrossRef]
  49. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990). [CrossRef]
  50. T. Nakashima, T. Sakakibara, and T. Kawai, “Highly luminescent CdTe nanocrystal-polymer composites based on ionic liquid,” Chem. Lett.34(10), 1410–1411 (2005). [CrossRef]
  51. L. W. Wang and A. Zunger, “Pseudopotential calculations of nanoscale CdSe quantum dots,” Phys. Rev. B Condens. Matter53(15), 9579–9582 (1996). [CrossRef] [PubMed]
  52. C. Burda, S. Link, T. C. Green, and M. A. El-Sayed, “New transient absorption observed in the spectrum of colloidal CdSe nanoparticles pumped with high-power femtosecond pulses,” J. Phys. Chem. B103(49), 10775–10780 (1999). [CrossRef]
  53. M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, “Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters,” Phys. Rev. Lett.65(13), 1623–1626 (1990). [CrossRef] [PubMed]
  54. B. Gu, Y. Fan, J. Wang, J. Chen, J. Ding, H. Wang, and B. Guo, “Characterization of saturable absorbers using an open-aperture Gaussian-beam Z scan,” Phys. Rev. A73(6), 065803 (2006). [CrossRef]
  55. F. Sanchez, K. Abbaoui, and Y. Cherruault, “Beyond the thin-sheet approximation: Adomian’s decomposition,” Opt. Commun.173(1-6), 397–401 (2000). [CrossRef]
  56. G. Adomian, “A review of the decomposition method in applied mathematics,” J. Math. Anal. Appl.135(2), 501–544 (1988). [CrossRef]
  57. B. Gu, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Theory of Gaussian beam Z scan with simultaneous third- and fifth-order nonlinear refraction based on a Gaussian decomposition method,” J. Opt. Soc. Am. B22(12), 2651–2659 (2005). [CrossRef]
  58. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron.27(6), 1296–1309 (1991). [CrossRef]
  59. G. Lowet and G. Van der Perre, “Ultrasound velocity measurement in long bones: measurement method and simulation of ultrasound wave propagation,” J. Biomech.29(10), 1255–1262 (1996). [CrossRef] [PubMed]
  60. http://www.matbase.com/material/polymers/commodity/pmma/properties .
  61. Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.)47(14), 4893–4896 (2006). [CrossRef]
  62. G. Piredda, D. D. Smith, B. Wendling, and R. W. Boyd, “Nonlinear optical properties of a gold-silica composite with high gold fill fraction and the sign change of its nonlinear absorption coefficient,” J. Opt. Soc. Am. B25(6), 945–950 (2008). [CrossRef]
  63. X. Liu, K. Matsumura, Y. Tomita, K. Yasui, K. Kojima, and K. Chikama, “Nonlinear optical responses of nanoparticle-polymer composites incorporating organic (hyperbranched polymer)-metallic nanoparticle complex,” J. Appl. Phys.108(7), 073102 (2010). [CrossRef]
  64. B. Taheri, H. Liu, B. Jassemnejad, D. Appling, R. C. Powell, and J. J. Song, “Intensity scan and two photon absorption and nonlinear refraction of C60 in toluene,” Appl. Phys. Lett.68(10), 1317–1319 (1996). [CrossRef]
  65. R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase gratings with arbitrary grating space,” J. Opt. Soc. Am.68(6), 806–808 (1978). [CrossRef]
  66. G. I. Stegeman and R. H. Stolen, “Waveguides and fibers for nonlinear optics,” J. Opt. Soc. Am. B6(4), 652–662 (1989). [CrossRef]
  67. Y. Lin, J. Zhang, E. Kumacheva, and E. H. Sargent, “Third-order optical nonlinearity and figure of merit of CdS nanocrystals chemically stabilized in spin-processable polymer films,” J. Mater. Sci.39(3), 993–996 (2004). [CrossRef]
  68. D. Pelinovsky, J. Sears, L. Brozozowski, and E. H. Sargent, “Stable all-optical limiting in nonlinear periodic structures. I. Analysis,” J. Opt. Soc. Am. B19(1), 43–53 (2002). [CrossRef]
  69. W. N. Ye, L. Brozozowski, E. H. Sargent, and D. Pelinovsky, “Stable all-optical limiting in nonlinear periodic structures. III. Nonsolitonic pulse propagation,” J. Opt. Soc. Am. B20(4), 695–705 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited