OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13513–13521

Polarization-independent chalcogenide glass nanowires with anomalous dispersion for all-optical processing

Xin Gai, Duk-Yong Choi, Steve Madden, and Barry Luther-Davies  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 13513-13521 (2012)
http://dx.doi.org/10.1364/OE.20.013513


View Full Text Article

Enhanced HTML    Acrobat PDF (1289 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the design and fabrication of square Ge11.5As24Se64.5 (Ge11) nonlinear nanowires fully embedded in a silica cladding for polarization independent (P-I) nonlinear processing. We observed similar performance for FWM using both TE and TM modes confirming that a near P-I operation was obtained. In addition we find that the supercontinuum spectrum that can be generated in the nanowires using 1ps pulse pulses with around 30W peak power was independent of polarization.

© 2012 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(220.0220) Optical design and fabrication : Optical design and fabrication
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: May 1, 2012
Revised Manuscript: May 22, 2012
Manuscript Accepted: May 24, 2012
Published: June 1, 2012

Citation
Xin Gai, Duk-Yong Choi, Steve Madden, and Barry Luther-Davies, "Polarization-independent chalcogenide glass nanowires with anomalous dispersion for all-optical processing," Opt. Express 20, 13513-13521 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-13513


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931–6933 (2004). [CrossRef]
  2. J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett.14(6), 822–824 (2002). [CrossRef]
  3. A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express16(4), 2804–2815 (2008). [CrossRef] [PubMed]
  4. A. Prasad, “Ge-As-Se chalcogenide glasses for all-optical signal processing,” in Laser Physics Center(Australian National University, 2010).
  5. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express16(25), 20374–20381 (2008). [CrossRef] [PubMed]
  6. F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express17(5), 3514–3520 (2009). [CrossRef] [PubMed]
  7. M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010). [CrossRef]
  8. M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express17(4), 2182–2187 (2009). [CrossRef] [PubMed]
  9. T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express18(16), 17252–17261 (2010). [CrossRef] [PubMed]
  10. M. D. Pelusi, F. Luan, D. Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As(2)S(3) glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express18(25), 26686–26694 (2010). [CrossRef] [PubMed]
  11. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press Inc., 2001).
  12. W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett.85(23), 5523–5525 (2004). [CrossRef]
  13. X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett.36(6), 796–798 (2011). [CrossRef] [PubMed]
  14. S. M. Gao, X. Z. Zhang, Z. Q. Li, and S. L. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum. Electron.16(1), 250–256 (2010). [CrossRef]
  15. Y. Tian, P. Dong, and C. X. Yang, “Polarization independent wavelength conversion in fibers using incoherent pumps,” Opt. Express16(8), 5493–5498 (2008). [CrossRef] [PubMed]
  16. S. P. Chan, C. E. Phun, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,” J. Lightwave Technol.23(6), 2103–2111 (2005). [CrossRef]
  17. S. T. Lim, C. E. Png, E. A. Ong, and Y. L. Ang, “Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments,” Opt. Express15(18), 11061–11072 (2007). [CrossRef] [PubMed]
  18. X. Gai, D. Y. Choi, S. Madden, and B. Luther-Davies, “Interplay between Raman scattering and four-wave mixing in As(2)S(3) chalcogenide glass waveguides,” J. Opt. Soc. Am. B28(11), 2777–2784 (2011). [CrossRef]
  19. X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge(11.5)As(24)Se(64.5) nanowires with a nonlinear parameter of 136 W(⁻¹)m(⁻¹) at 1550 nm,” Opt. Express18(18), 18866–18874 (2010). [CrossRef] [PubMed]
  20. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol.26(11), 1423–1431 (2008). [CrossRef]
  21. P. Lusse, P. Stuwe, J. Schule, and H. G. Unger, “Analysis of Vectorial Mode Fields in Optical Wave-Guides by a New Finite-Difference Method,” J. Lightwave Technol.12(3), 487–494 (1994). [CrossRef]
  22. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express15(10), 5976–5990 (2007). [CrossRef] [PubMed]
  23. X. Gai, R. P. Wang, C. Xiong, M. J. Steel, B. J. Eggleton, and B. Luther-Davies, “Near-zero anomalous dispersion Ge11.5As24Se64.5 glass nanowires for correlated photon pair generation: design and analysis,” Opt. Express20(2), 776–786 (2012). [CrossRef] [PubMed]
  24. D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE T. Nanotechnol.7(3), 285–290 (2008). [CrossRef]
  25. J. J. Hu, N. N. Feng, N. Carlie, L. Petit, J. F. Wang, A. Agarwal, K. Richardson, and L. Kimerling, “Low-loss high-index-contrast planar waveguides with graded-index cladding layers,” Opt. Express15(22), 14566–14572 (2007). [CrossRef] [PubMed]
  26. Q. Lin and G. P. Agrawal, “Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers,” J. Opt. Soc. Am. B21(6), 1216–1224 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited