OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13566–13572

Broadband terahertz absorber realized by self-assembled multilayer glass spheres

Dae-Seon Kim, Dong-Hyun Kim, Sehyun Hwang, and Jae-Hyung Jang  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 13566-13572 (2012)
http://dx.doi.org/10.1364/OE.20.013566


View Full Text Article

Enhanced HTML    Acrobat PDF (2346 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A broadband terahertz (THz) absorber consisting of multilayer glass spheres and polydimethylsiloxane (PDMS) was realized. The multilayer glass spheres were deposited by repeating a self-assembly method used to form monolayer glass spheres and by the spin-coating of PDMS to fill the gaps between the glass spheres. The average reflection at the surface of the absorber was 0.8% and the absorbance was higher than 98% in the frequency range between 0.7 to 2.0 THz.

© 2012 OSA

OCIS Codes
(310.1210) Thin films : Antireflection coatings
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Thin Films

History
Original Manuscript: April 3, 2012
Revised Manuscript: May 7, 2012
Manuscript Accepted: May 23, 2012
Published: June 1, 2012

Citation
Dae-Seon Kim, Dong-Hyun Kim, Sehyun Hwang, and Jae-Hyung Jang, "Broadband terahertz absorber realized by self-assembled multilayer glass spheres," Opt. Express 20, 13566-13572 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-13566


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater.1(1), 26–33 (2002). [CrossRef] [PubMed]
  2. B. M. Fischer, M. Hoffmann, H. Helm, R. Wilk, F. Rutz, T. Kleine-Ostmann, M. Koch, and P. Jepsen, “Terahertz time-domain spectroscopy and imaging of artificial RNA,” Opt. Express13(14), 5205–5215 (2005). [CrossRef] [PubMed]
  3. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007). [CrossRef]
  4. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002). [CrossRef] [PubMed]
  5. L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett.92(9), 091117 (2008). [CrossRef]
  6. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009). [CrossRef]
  7. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008). [CrossRef] [PubMed]
  8. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys.43(22), 225102 (2010). [CrossRef]
  9. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett.95(24), 241111 (2009). [CrossRef]
  10. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett.36(6), 945–947 (2011). [CrossRef] [PubMed]
  11. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010). [CrossRef]
  12. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett.36(17), 3476–3478 (2011). [CrossRef] [PubMed]
  13. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys.102(4), 043517 (2007). [CrossRef]
  14. P. A. George, W. Hui, F. Rana, B. G. Hawkins, A. E. Smith, and B. J. Kirby, “Microfluidic devices for terahertz spectroscopy of biomolecules,” Opt. Express16(3), 1577–1582 (2008). [CrossRef] [PubMed]
  15. A. Podzorov and G. Gallot, “Low-loss polymers for terahertz applications,” Appl. Opt.47(18), 3254–3257 (2008). [CrossRef] [PubMed]
  16. C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E. B. Kley, and A. Tünnermann, “Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range,” Opt. Express17(5), 3063–3077 (2009). [CrossRef] [PubMed]
  17. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt.32(7), 1154–1167 (1993). [CrossRef] [PubMed]
  18. Y. W. Chen, P. Y. Han, and X. C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett.94(4), 041106 (2009). [CrossRef]
  19. M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution deposition for omnidirectional antireflection,” Appl. Phys. Lett.91(8), 081118 (2007). [CrossRef]
  20. E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited