OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13612–13621

MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices

Alexandros Emboras, Adel Najar, Siddharth Nambiar, Philippe Grosse, Emmanuel Augendre, Charles Leroux, Barbara de Salvo, and Roch Espiau de Lamaestre  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 13612-13621 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2220 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the electro optical properties of a Metal-Nitride-Oxide-Silicon (MNOS) stack for a use in CMOS compatible plasmonic active devices. We show that the insertion of an ultrathin stoichiometric Si3N4 layer in a MOS stack lead to an increase in the electrical reliability of a copper gate MNOS capacitance from 50 to 95% thanks to a diffusion barrier effect, while preserving the low optical losses brought by the use of copper as the plasmon supporting metal. An experimental investigation is undertaken at a wafer scale using some CMOS standard processes of the LETI foundry. Optical transmission measurments conducted in a MNOS channel waveguide configuration coupled to standard silicon photonics circuitry confirms the very low optical losses (0.39 dB.μm−1), in good agreement with predictions using ellipsometric optical constants of Cu.

© 2012 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: February 24, 2012
Manuscript Accepted: April 2, 2012
Published: June 4, 2012

Alexandros Emboras, Adel Najar, Siddharth Nambiar, Philippe Grosse, Emmanuel Augendre, Charles Leroux, Barbara de Salvo, and Roch Espiau de Lamaestre, "MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices," Opt. Express 20, 13612-13621 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9, 20–27 (2006). [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003). [CrossRef] [PubMed]
  3. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19, 8888–8902 (2011). [CrossRef] [PubMed]
  4. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: A metal–oxide–Si field effect plasmonic modulator,” Nano Lett.9, 897–902 (2009). [CrossRef] [PubMed]
  5. A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmon-enhanced emission from optically-doped mos light sources,” Opt. Express17, 185–192 (2009). [CrossRef] [PubMed]
  6. S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99, 151114–151116 (2011). [CrossRef]
  7. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325, 594–597 (2009). [CrossRef] [PubMed]
  8. V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett.9, 178–182 (2009). [CrossRef]
  9. H. S. Lee, C. Awada, S. Boutami, F. Charra, L. Douillard, and R. E. de Lamaestre, “Loss mechanisms of surface plasmon polaritons propagating on a smooth polycrystalline Cu surface,” Opt. Express20, 8974–8981 (2012). [CrossRef]
  10. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett.31, 2133–2135 (2006). [CrossRef] [PubMed]
  11. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17, 16646–16653 (2009). [CrossRef] [PubMed]
  12. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express18, 13173–13179 (2010). [CrossRef] [PubMed]
  13. C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics.” Nano Lett.10, 2922–2926 (2010). [CrossRef] [PubMed]
  14. E. D. Palik, Handbook of Optical Constants (Academic, 1985).
  15. R. Rosenberg, D. C. Edelstein, C.-K. Hu, and K. P. Rodbell, “Copper metallization for high performance silicon technology,” Annu. Rev. Mater. Sci.30, 229–262 (2000). [CrossRef]
  16. B. G. Willis and D. V. Lang, “Oxidation mechanism of ionic transport of copper in sio2 dielectrics,” Thin Solid Films467, 284–293 (2004). [CrossRef]
  17. M. Y. Kwak, D. H. Shin, T. W. Kang, and K. N. Kim, “Characteristics of tin barrier layer against cu diffusion,” Thin Solid Films339, 290–293 (1999). [CrossRef]
  18. V. S. C. Len, R. E. Hurley, N. McCusker, D. W. McNeill, B. M. Armstrong, and H. S. Gamble, “An investigation into the performance of diffusion barrier materials against copper diffusion using metal-oxide-semiconductor capacitor structures,” Solid-State Electron.43, 1045–1049 (1999). [CrossRef]
  19. K. Holloway, P. M. Fryer, C. Cabral, J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, “Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions,” J. Appl. Phys.71, 5433–5444 (1992). [CrossRef]
  20. T. Wang, Y. Cheng, Y. Wang, T. Hsieh, G. Hwang, and C. Chen, “Comparison of characteristics and integration of copper diffusion-barrier dielectrics,” Thin Solid Films498, 36–42 (2006). [CrossRef]
  21. H. Miyazaki, H. Kojima, and K. Hinode, “Passivation effect of silicon nitride against copper diffusion,” J. Appl. Phys.81, 7746–7750 (1997). [CrossRef]
  22. A. S. Lee, N. Rajagopalan, M. Le, B. H. Kim, and H. M’Saad, “Development and characterization of a PECVD silicon nitride for damascene applications,” J. Electrochem. Soc.151, F7–F9 (2004). [CrossRef]
  23. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427, 615–618 (2004). [CrossRef] [PubMed]
  24. M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (<4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: understanding the processing, structure, and physical and electrical limits,” J. Electrochem. Soc.90, 2057–2121 (2001).
  25. Y. Shi, X. Wang, and T.-P. Ma, “Electrical properties of high-quality ultrathin nitride/oxide stack dielectrics,” IEEE Trans. Electron Dev.46, 362–368 (1999). [CrossRef]
  26. K.-M. Chang, W.-C. Yang, C.-F. Chen, and B.-F. Hung, “The changing effect of N2/O2 gas flow rate ratios on ultrathin nitrogen-enriched oxynitride gate dielectrics,” J. Electrochem. Soc.151, F118–F122 (2004). [CrossRef]
  27. V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).
  28. R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films270, 596–600 (1995). [CrossRef]
  29. C. Leroux, F. Allain, A. Toffoli, G. Ghibaudo, and G. Reimbold, “Automatic statistical full quantum analysis of C-V and I-V characteristics for advanced mos gate stacks,” Microelectron. Eng.84, 2408–2411 (2007). [CrossRef]
  30. J. Robertson, “High dielectric constant gate oxides for metal oxide si transistors,” Rep. Prog. Phys.69, 327–396 (2006). [CrossRef]
  31. H. Jin and K. J. Weber, “The effect of LPCVD silicon nitride deposition on the Si-SiO2 interface of oxidized silicon wafers,” J. Electrochem. Soc.154, H5–H8 (2007). [CrossRef]
  32. G. Ghibaudo, G. Pananakakis, R. Kies, E. Vincent, and C. Papadas, “Accelerated dielectric breakdown and wear out standard testing methods and structures for reliability evaluation of thin oxides,” Microelectron. Reliab.39, 597–613 (1999). [CrossRef]
  33. A. A. Istratov and E. R. Weber, “Physics of copper in silicon,” J. Electrochem. Soc.149, G21–G30 (2002). [CrossRef]
  34. J. D. McBrayer, R. M. Swanson, and T. W. Sigmon, “Diffusion of metals in silicon dioxide,” J. Electrochem. Soc.133, 1242–1246 (1986). [CrossRef]
  35. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol.23, 4222–4238 (2005). [CrossRef]
  36. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonicwaveguides,” Opt. Express15, 1211–1221 (2007). [CrossRef] [PubMed]
  37. C. Kopp, E. Augendre, R. Orobtchouk, O. Lemonnier, and J.-M. Fedeli, “Enhanced fiber grating coupler integrated by wafer-to-wafer bonding,” J. Lightwave Technol.29, 1847–1851 (2011). [CrossRef]
  38. A. Snyder and J. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited