OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13636–13650

Dielectric antennas - a suitable platform for controlling magnetic dipolar emission

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 13636-13650 (2012)
http://dx.doi.org/10.1364/OE.20.013636


View Full Text Article

Enhanced HTML    Acrobat PDF (2267 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasmonic nanoparticles are commonly used to tune and direct the radiation from electric dipolar emitters. Less progress has been made towards understanding complementary systems of magnetic nature. However, it has been recently shown that high-index dielectric spheres can act as effective magnetic antennas. Here we explore the concept of coupling dielectric magnetic antennas with either an electric or magnetic dipolar emitter in a similar fashion to the purely electric systems reported previously. We investigate the enhancement of radiation from systems comprising admixtures of these electric and magnetic elements and perform a full study of its dependence on the distance and polarization of the emitter with respect to the antenna. A comparison to the plasmon antennas reveals remarkable symmetries between electric and magnetic systems, which might lead to novel paradigms in the design of nanophotonic devices that involve magnetic activity.

© 2012 OSA

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(260.2510) Physical optics : Fluorescence
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Physical Optics

History
Original Manuscript: March 8, 2012
Revised Manuscript: April 19, 2012
Manuscript Accepted: April 26, 2012
Published: June 4, 2012

Citation
M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, "Dielectric antennas - a suitable platform for controlling magnetic dipolar emission," Opt. Express 20, 13636-13650 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-13636


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681–681 (1946).
  2. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett.100, 203002 (2008). [CrossRef] [PubMed]
  3. A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, and A. J. Meixner, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett.201, 073002 (2009). [CrossRef]
  4. S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006). [CrossRef] [PubMed]
  5. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006). [CrossRef] [PubMed]
  6. R. Esteban, T. Teperik, and J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett.104, 026802 (2010). [CrossRef] [PubMed]
  7. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008). [CrossRef]
  8. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010). [CrossRef] [PubMed]
  9. R. Ruppin, “Decay of an excited molecule near a small metal sphere,” J. Chem. Phys.76, 1681–1684 (1982). [CrossRef]
  10. Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: a complete treatment,” Surf. Sci.195, 1–14 (1988). [CrossRef]
  11. R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun.261, 368–375 (2006). [CrossRef]
  12. H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B76, 115123 (2007). [CrossRef]
  13. G. Colas des Francs, A. Bouhelier, E. Finot, J. C. Weeber, A. Dereux, C. Girard, and E. Dujardin, “Fluorescence relaxation in the nearfield of a mesoscopic metallic particle: distance dependence and role of plasmon modes,” Opt. Express16, 17654–17666 (2008). [CrossRef] [PubMed]
  14. R. J. Glauber and M. Lewenstein, “Quantum optics of dielectric media,” Phys. Rev. A43, 467–491 (1991). [CrossRef] [PubMed]
  15. J. P. Dowling and C. M. Bowden, “Atomic emission rates in inhomogeneous media with applications to photonic band structures,” Phys. Rev. A46, 612–622 (1992). [CrossRef] [PubMed]
  16. R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum dot-metal nanoparticle systems: connecting the dots,” Phys. Rev. B83, 235406 (2011). [CrossRef]
  17. S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett.106, 193004 (2011). [CrossRef] [PubMed]
  18. A. Alú and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express17, 5723–5730 (2009). [CrossRef] [PubMed]
  19. N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmüller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett.12, 364–369 (2011). [CrossRef] [PubMed]
  20. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron Silicon particles in the infrared,” Opt. Express19, 4815–4862 (2011). [CrossRef] [PubMed]
  21. R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton.5, 053512 (2011). [CrossRef]
  22. V. V. Klimov and V. S. Letokhov, “Electric and magnetic dipole transitions of an atom in the presence of spherical dielectric interface,” Laser Phys.15, 61–73 (2005).
  23. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1998). [CrossRef]
  24. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  25. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, 2002).
  26. In the absence of absorption, ℜ(an) = |an|2 and ℜ(bn) = |bn|2, where ℜ(z) denotes the real part of z.
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  28. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited