OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13657–13662

The ultraviolet laser from individual ZnO microwire with quadrate cross section

Meng Ding, Dongxu Zhao, Bin Yao, Shulin E, Zhen Guo, Ligong Zhang, and Dezhen Shen  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 13657-13662 (2012)
http://dx.doi.org/10.1364/OE.20.013657


View Full Text Article

Enhanced HTML    Acrobat PDF (989 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The ZnO microwires with quadrate cross section were synthesized by chemical vapor deposition method. The ultraviolet laser with the Fabry-pérot cavity modes was realized from an individual ZnO microwire. Under the low excitation power densities, the amplified spontaneous emission was observed from the ZnO microwire, while the lasing action was observed under the high excitation power densities. The ZnO microwire exhibited low threshold excitation intensity of 58 kW/cm2 and quality factor of 485. The characteristics and possible lasing mechanism were investigated in detail.

© 2012 OSA

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 21, 2012
Revised Manuscript: May 13, 2012
Manuscript Accepted: May 13, 2012
Published: June 4, 2012

Citation
Meng Ding, Dongxu Zhao, Bin Yao, Shulin E, Zhen Guo, Ligong Zhang, and Dezhen Shen, "The ultraviolet laser from individual ZnO microwire with quadrate cross section," Opt. Express 20, 13657-13662 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-13657


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,” Appl. Phys. Lett.72(25), 3270–3272 (1998). [CrossRef]
  2. Z. Guo, H. Zhang, D. X. Zhao, Y. C. Liu, B. Yao, B. H. Li, Z. Z. Zhang, and D. Z. Shen, “The ultralow driven current ultraviolet-blue light-emitting diode based on n-ZnO nanowires/i-polymer/p-GaN heterojunction,” Appl. Phys. Lett.97(17), 173508 (2010). [CrossRef]
  3. J. B. Baxter and E. S. Aydil, “Nanowire-based dye-sensitized solar cells,” Appl. Phys. Lett.86(5), 053114 (2005). [CrossRef]
  4. G. P. Wang, S. Chu, N. Zhan, Y. Q. Lin, L. Chernyak, and J. L. Liu, “ZnO homojunction photodiodes based on Sb-doped p-type nanowire array and n-type film for ultraviolet detection,” Appl. Phys. Lett.98(4), 041107 (2011). [CrossRef]
  5. G. Zhang, X. Shen, and Y. Q. Yang, “Facile Synthesis of Monodisperse Porous ZnO Spheres by a Soluble Starch-Assisted Method and Their Photocatalytic Activity,” J. Phys. Chem. C115(15), 7145–7152 (2011). [CrossRef]
  6. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  7. D. Wang, H. W. Seo, C. C. Tin, M. J. Bozack, J. R. Williams, M. Park, and Y. Tzeng, “Lasing in whispering gallery mode in ZnO nanonails,” J. Appl. Phys.99(9), 093112 (2006). [CrossRef]
  8. E. S. Jang, X. Y. Chen, J. H. Won, J. H. Chung, D. J. Jang, Y. W. Kim, and J. H. Choy, “Soft-solution route to ZnO nanowall array with low threshold power density,” Appl. Phys. Lett.97(4), 043109 (2010). [CrossRef]
  9. D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Y. Zhang, S. L. Chuang, and P. Yang, “Whispering Gallery Mode Lasing from Zinc Oxide Hexagonal Nanodisks,” ACS Nano4(6), 3270–3276 (2010). [CrossRef] [PubMed]
  10. C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Cao, M. Lorenz, and M. Grundmann, “Whispering gallery mode lasing in zinc oxide microwires,” Appl. Phys. Lett.92(24), 241102 (2008). [CrossRef]
  11. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999). [CrossRef]
  12. D. X. Zhao, C. Andreazza, P. Andreazza, J. G. Ma, Y. C. Liu, and D. Z. Shen, “Temperature-dependent growth mode and photoluminescence properties of ZnO nanostructures,” Chem. Phys. Lett.399(4-6), 522–526 (2004). [CrossRef]
  13. Z. Guo, D. X. Zhao, D. Z. Shen, F. Fang, J. Y. Zhang, and B. H. Li, “Structure and Photoluminescence Properties of Aligned ZnO Nanobolt Arrays,” Cryst. Growth Des.7(11), 2294–2296 (2007). [CrossRef]
  14. Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth287(1), 169–179 (2006). [CrossRef]
  15. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science291(5510), 1947–1949 (2001). [CrossRef] [PubMed]
  16. D. J. Gargas, M. E. Toimil-Molares, and P. D. Yang, “Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy,” J. Am. Chem. Soc.131(6), 2125–2127 (2009). [CrossRef] [PubMed]
  17. M. A. Zimmler, J. M. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett.93(5), 051101–051103 (2008). [CrossRef]
  18. R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks,” Adv. Mater.23(19), 2199–2204 (2011). [CrossRef] [PubMed]
  19. J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, “Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides,” J. Phys. Chem. B107(34), 8816–8828 (2003). [CrossRef]
  20. H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. Mckinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater.15(22), 1907–1911 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited