OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13663–13668

Generating few-cycle pulses for nanoscale photoemission easily with an erbium-doped fiber laser

Sebastian Thomas, Ronald Holzwarth, and Peter Hommelhoff  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 13663-13668 (2012)
http://dx.doi.org/10.1364/OE.20.013663


View Full Text Article

Enhanced HTML    Acrobat PDF (912 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a simple setup capable of generating four-cycle pulses at a center wavelength of 1700nm for nanoscale photoemission. Pulses from an amplified erbium-doped fiber laser are spectrally broadened by propagation through a highly non-linear fiber. Subsequently, we exploit dispersion in two different types of glass to compress the pulses. The pulse length is estimated by measuring an interferometric autocorrelation trace and comparing it to a numerical simulation. We demonstrate highly non-linear photoemission of electrons from a nanometric tungsten tip in a hitherto unexplored pulse parameter range.

© 2012 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(140.3500) Lasers and laser optics : Lasers, erbium
(140.7090) Lasers and laser optics : Ultrafast lasers
(320.5520) Ultrafast optics : Pulse compression
(320.6629) Ultrafast optics : Supercontinuum generation
(240.6675) Optics at surfaces : Surface photoemission and photoelectron spectroscopy

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 21, 2012
Revised Manuscript: April 27, 2012
Manuscript Accepted: April 29, 2012
Published: June 4, 2012

Citation
Sebastian Thomas, Ronald Holzwarth, and Peter Hommelhoff, "Generating few-cycle pulses for nanoscale photoemission easily with an erbium-doped fiber laser," Opt. Express 20, 13663-13668 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-13663


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Kafka, T. Baer, and D. W. Hall, “Mode-locked erbium-doped fiber laser with soliton pulse shaping,” Opt. Lett.14, 1269–1271 (1989).
  2. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett.18, 1080–1082 (1993).
  3. A. Sell, G. Krauss, R. Scheu, R. Huber, and A. Leitenstorfer, “8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation,” Opt. Express17, 1070–1077 (2009).
  4. A. Andrianov, A. Kim, S. Muraviov, and A. Sysoliatin, “Wavelength-tunable few-cycle optical pulses directly from an all-fiber er-doped laser setup,” Opt. Lett.34, 3193–3195 (2009).
  5. E. Anashkina, A. Andrianov, S. Muravyev, and A. Kim, “All-fiber design of erbium-doped laser system for tunable two-cycle pulse generation,” Opt. Express19, 20141–20150 (2011).
  6. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photon.4, 33–36 (2010).
  7. P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, “Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses,” Phys. Rev. Lett.97, 247402 (2006). [CrossRef]
  8. P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett.96, 077401 (2006).
  9. C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett.98, 043907 (2007).
  10. M. Schenk, M. Krüger, and P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett.105, 257601 (2010). [CrossRef]
  11. R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, and C. Ropers, “Tip-enhanced strong-field photoemission,” Phys. Rev. Lett.105, 147601 (2010). [CrossRef]
  12. M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, “Attosecond physics in photoemission from a metal nanotip,” J. Phys. B45, 074006 (2012). [CrossRef]
  13. G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, and P. Hommelhoff, “Electron rescattering at metal nanotips induced by ultrashort laser pulses,” submitted, arXiv:1201.0462 (2012).
  14. M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature475, 78–81 (2011).
  15. G. Krauss, D. Fehrenbacher, D. Brida, C. Riek, A. Sell, R. Huber, and A. Leitenstorfer, “All-passive phase locking of a compact Er:fiber laser system,” Opt. Lett.36, 540–542 (2011).
  16. C. Homann, M. Bradler, M. Förster, P. Hommelhoff, and E. Riedle, “Carrier-envelope phase stable sub-two-cycle pulses tunable around 1.8 μm at 100 khz,” Opt. Lett. 37, 1673–1675 (2012).
  17. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett.103, 257404 (2009).
  18. T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12, 992–996 (2012).
  19. G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature483, 190–193 (2012).
  20. AG Schott, “Optical glass data sheets,” http://www.us.schott.com/advanced_optics/english/download/schott_optical_glass_collection_datasheets_dec_2011_us.pdf .
  21. R. Gomer, Field Emission and Field Ionization (Harvard University Press, 1961).
  22. H. Kawano, “Effective work functions for ionic and electronic emissions from mono- and polycrystalline surfaces,” Prog. Surf. Sci.83, 1–165 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited