OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13684–13691

Generation of ultrashort 25-μJ pulses at 200 nm by dual broadband frequency doubling with a thin KBe2BO3F2 crystal

Chun Zhou, Teruto Kanai, Xiaoyang Wang, Yong Zhu, Chuangtian Chen, and Shuntaro Watanabe  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 13684-13691 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (851 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ultrashort pulses with a 25-μJ output energy were generated at 200 nm by dual broadband frequency doubling with a thin KBe2BO3F2 (KBBF) crystal at 1 kHz as the fourth harmonic of a high power Ti:sapphire laser. The spectrum was broadened to a spectral width of 2.25 nm. The pulse duration of 56 fs was measured by single-shot autocorrelation with two-photon fluorescence from self-trapped excitons in a CaF2 crystal.

© 2012 OSA

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(140.3515) Lasers and laser optics : Lasers, frequency doubled

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 12, 2012
Revised Manuscript: May 23, 2012
Manuscript Accepted: May 24, 2012
Published: June 4, 2012

Chun Zhou, Teruto Kanai, Xiaoyang Wang, Yong Zhu, Chuangtian Chen, and Shuntaro Watanabe, "Generation of ultrashort 25-μJ pulses at 200 nm by dual broadband frequency doubling with a thin KBe2BO3F2 crystal," Opt. Express 20, 13684-13691 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys.3(6), 381–387 (2007). [CrossRef]
  2. T. Sekikawa, A. Kosuge, T. Kanai, and S. Watanabe, “Nonlinear optics in the extreme ultraviolet,” Nature432(7017), 605–608 (2004). [CrossRef] [PubMed]
  3. T. Kiss, F. Kanetaka, T. Yokoya, T. Shimojima, K. Kanai, S. Shin, Y. Onuki, T. Togashi, C. Zhang, C. T. Chen, and S. Watanabe, “Photoemission spectroscopic evidence of gap anisotropy in an f-Electron superconductor,” Phys. Rev. Lett.94(5), 057001 (2005). [CrossRef] [PubMed]
  4. S. Mathias, L. Miaja-Avila, M. M. Murnane, H. Kapteyn, M. Aeschlimann, and M. Bauer, “Angle-resolved photoemission spectroscopy with a femtosecond high harmonic light source using a two-dimensional imaging electron analyzer,” Rev. Sci. Instrum.78(8), 083105 (2007). [CrossRef] [PubMed]
  5. K. Ishizaka, T. Kiss, T. Yamamoto, Y. Ishida, T. Saitoh, M. Matsunami, R. Eguchi, T. Ohtsuki, A. Kosuge, T. Kanai, M. Nohara, H. Takagi, S. Watanabe, and S. Shin, “Femtosecond core-level photoemision spectroscopy on 1T-TaS2 using a 60-eV laser source,” Phys. Rev. B83(8), 081104 (2011). [CrossRef]
  6. D. Yoshitomi, T. Shimizu, T. Sekikawa, and S. Watanabe, “Generation and focusing of submilliwatt-average-power 50-nm pulses by the fifth harmonic of a KrF laser,” Opt. Lett.27(24), 2170–2172 (2002). [CrossRef] [PubMed]
  7. K. L. Ishikawa, K. Schiessl, E. Persson, and J. Burgdörfer, “Fine-scale oscillations in the wavelength and intensity dependence of high-order harmonic generation: Connection with channel closings,” Phys. Rev. A79(3), 033411 (2009). [CrossRef]
  8. A. Rundquist, C. G. Durfee, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase-matched generation of coherent soft X-rays,” Science280(5368), 1412–1415 (1998). [CrossRef] [PubMed]
  9. E. Takahashi, Y. Nabekawa, and K. Midorikawa, “Generation of 10- microJ coherent extreme-ultraviolet light by use of high-order harmonics,” Opt. Lett.27(21), 1920–1922 (2002). [CrossRef] [PubMed]
  10. C. G. Durfee, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett.24(10), 697–699 (1999). [CrossRef] [PubMed]
  11. T. Fuji, T. Horio, and T. Suzuki, “Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas,” Opt. Lett.32(17), 2481–2483 (2007). [CrossRef] [PubMed]
  12. M. Ghotbi, P. Trabs, and M. Beutler, “Generation of high-energy, sub-20-fs pulses in the deep ultraviolet by using spectral broadening during filamentation in argon,” Opt. Lett.36(4), 463–465 (2011). [CrossRef] [PubMed]
  13. M. Ghotbi, M. Beutler, and F. Noack, “Generation of 2.5 μJ vacuum ultraviolet pulses with sub-50 fs duration by noncollinear four-wave mixing in argon,” Opt. Lett.35(20), 3492–3494 (2010). [CrossRef] [PubMed]
  14. T. Nagy and P. Simon, “Generation of 200-microJ, sub-25-fs deep-UV pulses using a noble-gas-filled hollow fiber,” Opt. Lett.34(15), 2300–2302 (2009). [CrossRef] [PubMed]
  15. T. Kanai, X. Zhou, T. Sekikawa, S. Watanabe, and T. Togashi, “Generation of subterawatt sub-10-fs blue pulses at 1-5 kHz by broadband frequency doubling,” Opt. Lett.28(16), 1484–1486 (2003). [CrossRef] [PubMed]
  16. T. Kanai, X. Zhou, T. Liu, A. Kosuge, T. Sekikawa, and S. Watanabe, “Generation of terawatt 10-fs blue pulses by compensation for pulse-front distortion in broadband frequency doubling,” Opt. Lett.29(24), 2929–2931 (2004). [CrossRef] [PubMed]
  17. F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, “Generation of tunable femtosecond pulses to as low as 172.7 nm by sum-frequency mixing in lithium triborate,” Opt. Lett.19(19), 1538–1540 (1994). [CrossRef] [PubMed]
  18. O. E. Martinez, “Achromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron.25(12), 2464–2468 (1989). [CrossRef]
  19. G. Szabó and Z. Bor, “Broadband frequency doubler for femtosecond pulses,” Appl. Phys. B50, 51–54 (1990). [CrossRef]
  20. C. Chen, J. Lu, T. Togashi, T. Suganuma, T. Sekikawa, S. Watanabe, Z. Xu, and J. Wang, “Second-harmonic generation from a KBe2 BO3F2 crystal in the deep ultraviolet,” Opt. Lett.27(8), 637–639 (2002). [CrossRef] [PubMed]
  21. T. Togashi, T. Kanai, T. Sekikawa, S. Watanabe, C. Chen, C. Zhang, Z. Xu, and J. Wang, “Generation of vacuum-ultraviolet light by an optically contacted, prism-coupled KBe2BO3F2 crystal,” Opt. Lett.28(4), 254–256 (2003). [CrossRef] [PubMed]
  22. C. Chen, G. Wang, X. Wang, Y. Zhu, Z. Xu, T. Kanai, and S. Watanabe, “Improved sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron.44(7), 617–621 (2008). [CrossRef]
  23. W. H. Glenn, “Second-harmonic generation by picosecond optical pulses,” IEEE J. Quantum Electron.5(6), 284–290 (1969). [CrossRef]
  24. R. C. Miller, “Second harmonic generation with a broadband optical maser,” Phys. Lett.26A, 177–178 (1968).
  25. Y. Nabekawa, Y. Kuramoto, T. Togashi, T. Sekikawa, and S. Watanabe, “Generation of 0.66-TW pulses at 1 kHz by a Ti:sapphire laser,” Opt. Lett.23(17), 1384–1386 (1998). [CrossRef] [PubMed]
  26. C. Zhou, T. Seki, T. Sukegawa, T. Kanai, J. Itatani, Y. Kobayashi, and S. Watanabe, “Large-scale, high-efficiency transmission grating for Terawatt-class Ti:sapphire lasers at 1 kHz,” Appl. Phys. Express4(7), 072701 (2011). [CrossRef]
  27. K. Hata, M. Watanabe, and S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B50(1), 55–59 (1990). [CrossRef]
  28. N. Sarukura, M. Watanabe, A. Endoh, and S. Watanabe, “Single-shot measurement of subpicosecond KrF pulse width by three-photon fluorescence of the XeF visible transition,” Opt. Lett.13(11), 996–998 (1988). [CrossRef] [PubMed]
  29. R. T. Williams, J. N. Bradford, and W. L. Faust, “Short-pulse optical studies of exciton relaxation and F-center formation in NaCl, KCl, and NaBr,” Phys. Rev. B18(12), 7038–7057 (1978). [CrossRef]
  30. S. A. Slattery and D. N. Nikogosyan, “Two-photon absorption at 211 nm in fused silica, crystalline quartz and some alkali halides,” Opt. Commun.228(1-3), 127–131 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited