OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13738–13747

Sub-wavelength energy concentration with electrically generated mid-infrared surface plasmons

A. Bousseksou, A. Babuty, J-P. Tetienne, I. Moldovan-Doyen, R. Braive, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 13738-13747 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2425 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



While freely propagating photons cannot be focused below their diffraction limit, surface-plasmon polaritons follow the metallic surface to which they are bound, and can lead to extremely sub-wavelength energy volumes. These properties are lost at long mid-infrared and THz wavelengths where metals behave as quasi-perfect conductors, but can in principle be recovered by artificially tailoring the surface-plasmon dispersion. We demonstrate - in the important mid-infrared range of the electromagnetic spectrum - the generation onto a semiconductor chip of plasmonic excitations which can travel along long distances, on bent paths, to be finally focused into a sub-wavelength volume. The demonstration of these advanced functionalities is supported by full near-field characterizations of the electromagnetic field distribution on the surface of the active plasmonic device.

© 2012 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: February 15, 2012
Revised Manuscript: April 19, 2012
Manuscript Accepted: May 14, 2012
Published: June 5, 2012

A. Bousseksou, A. Babuty, J-P. Tetienne, I. Moldovan-Doyen, R. Braive, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, "Sub-wavelength energy concentration with electrically generated mid-infrared surface plasmons," Opt. Express 20, 13738-13747 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.B. Pendry, L. Martin-Moreno, and M. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004). [CrossRef] [PubMed]
  2. F. J. Garcia de Abajo and J. J. Saenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett.95, 233901 (2005). [CrossRef]
  3. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelengthterahertz circuitry,” Opt. Express18, 754–764 (2010). [CrossRef] [PubMed]
  4. N. Janunts, K. Baghdasaryan, K. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun.253, 118–124 (2005). [CrossRef]
  5. V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys.11, 113043 (2009). [CrossRef]
  6. E. Moreno, S. Rodrigo, S. Bozhevolnyi, L. Martin- Moreno, and F. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008). [CrossRef] [PubMed]
  7. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010). [CrossRef]
  8. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93, 137404 (2004). [CrossRef] [PubMed]
  9. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9, 21–25 (2010). [CrossRef]
  10. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010). [CrossRef] [PubMed]
  11. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308, 670–672 (2005). [CrossRef] [PubMed]
  12. C. R. Williams, S. R. Andrews, S. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2, 175–179 (2008). [CrossRef]
  13. E.M. G. Brock, E. Hendry, and A. P. Hibbins, “Subwavelength lateral confinement of microwave surface waves,” Appl. Phys. Lett.99, 051108 (2011). [CrossRef]
  14. W. Zhao, O. M. Eldaiki, R. Yang, and Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express18, 21498–21503 (2010). [CrossRef] [PubMed]
  15. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9, 730–735 (2010). [CrossRef] [PubMed]
  16. S. C. Kehr, M. Cebula, O. Mieth, T. Hartartling, J. Seidel, S. Grafstrom, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett.100, 256403 (2010). [CrossRef]
  17. S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. T. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249 (2011). [CrossRef] [PubMed]
  18. H. C. Liu and F. Capasso, Eds. Intersubband Transitions in Quantum Wells: Physics and Device Applications (Academic Press, 1999).
  19. J.-P. Tetienne, A. Bousseksou, D. Costantini, R. Colombelli, A. Babuty, I. Moldovan-Doyen, Y. De Wilde, C. Sirtori, G. Beaudoin, L. Largeau, O. Mauguin, and I. Sagnes, “Injection of midinfrared surface plasmon polaritons with an integrated device,” Appl. Phys. Lett.97, 211110 (2010). [CrossRef]
  20. FDTD simulations have been performed with the commercial software package LUMERICAL.
  21. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, J.-P. Mulet, K. Joulain, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature444, 740–743 (2006). [CrossRef] [PubMed]
  22. Y. De Wilde, F. Formanek, and L. Aigouy, “Apertureless near-field scanning optical microscope based on a quartz tuning fork,” Rev. Sci. Instrum.74, 3889–3891 (2003). [CrossRef]
  23. V. Moreau, M. Bahriz, R. Colombelli, P. A. Lemoine, Y. De Wilde, L. R. Wilson, and A. B. Krysa, “Direct imaging of a laser mode via midinfrared near-field microscopy,” Appl. Phys. Lett.90, 201114 (2007).
  24. A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express17, 9391–9400 (2009). [CrossRef] [PubMed]
  25. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun.182, 321–328 (2000). [CrossRef]
  26. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts inscattering-type near-field optical microscopy,” Opt. Express15, 8550–8565 (2007). [CrossRef] [PubMed]
  27. P. M. Krenz, R.L. Olmon, B. A. Lail, M.B. Raschke, and G. D. Boreman, “Near-field measurement of infrared coplanar strip transmission line attenuation and propagation constants,” Opt. Express18, 21678–21686 (2010). [CrossRef] [PubMed]
  28. D. Dey, J. Kohoutek, R.M. Gelfand, A. Bonakdar, and H. Mohseni, “Composite nano-antenna integrated with quantum cascade laser,” IEEE Photon. Technol. Lett.22, 1580–1582 (2010). [CrossRef]
  29. M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillen-brand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5, 283–287 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited