OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13748–13761

Transmission of OFDM wired-wireless quintuple-play services along WDM LR-PONs using centralized broadband impairment compensation

Tiago M. F. Alves, Maria Morant, Adolfo V. T. Cartaxo, and Roberto Llorente  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 13748-13761 (2012)
http://dx.doi.org/10.1364/OE.20.013748


View Full Text Article

Enhanced HTML    Acrobat PDF (1820 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The simultaneous transmission of four orthogonal frequency-division multiplexing (OFDM)-based signals used to provide quintuple-play services along wavelength division multiplexing (WDM) long-reach passive optical networks (LR-PONs) is demonstrated experimentally. Particularly, the transmission performance of custom signal bearing Gigabit Ethernet data, Worldwide Interoperability for Microwave Access, Long Term Evolution and Ultra Wideband (sub-bands 2 and 3) signals is evaluated for different LR-PONs reaches, considering single-wavelength and WDM transmission, and using a centralized impairment compensation technique at the central office that is transparent to the services provided.It is shown that error vector magnitude-compliant levels are obtained for all the OFDM-based signals in WDM LR-PONs reaching 100 km and that negligible inter-channel crosstalk is obtained for a channel spacing of 100 GHz regardless the OFDM-based signal considered. The successful multi-format OFDM transmission along the 100 km-long WDM LR-PON is achieved in the absence of optical dispersion compensation or single sideband modulation, and it is enabled by the performance improvement provided by the centralized impairment compensation realized.

© 2012 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 23, 2012
Revised Manuscript: April 28, 2012
Manuscript Accepted: May 2, 2012
Published: June 5, 2012

Citation
Tiago M. F. Alves, Maria Morant, Adolfo V. T. Cartaxo, and Roberto Llorente, "Transmission of OFDM wired-wireless quintuple-play services along WDM LR-PONs using centralized broadband impairment compensation," Opt. Express 20, 13748-13761 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-13748


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Luo, T. Wang, S. Weinstein, M. Cvijetic, and S. Nakamura, “Integrating optical and wireless services in the access network,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper NThG1.
  2. Z. Jia, J. Yu, G. Ellinas, and G. Chang, “Key enabling technologies for optical-wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture,” J. Lightwave Technol.25, 3452–3471 (2007). [CrossRef]
  3. A. Cartaxo, J. Morgado, and D. Fonseca, “A perspective on optical-wireless converged NG-FTTH networks using directly modulated lasers,” in International Conference on Transparent Optical Networks, Stockholm, Sweden (2011), paper Mo.B4.3.
  4. J. Armstrong, “OFDM: from copper and wireless to optical,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper OMM1.
  5. L. Hanzo, M. Münster, B. Choi, and T. Keller, OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting (John Wiley & Sons, 2003).
  6. W. Shieh and I. Djordjevic, OFDM for Optical Communications (Elsevier/Academic Press, 2010).
  7. J. Armstrong, “OFDM for optical communication,” J. Lightwave Technol.27, 189–204 (2009). [CrossRef]
  8. N. Cvijetic, “OFDM for next generation optical access networks,” J. Lightwave Technol.30, 384–398 (2012). [CrossRef]
  9. High Rate UltraWideband PHY and MAC Standard, 2nd ed. (ECMA Int., Geneve, Switzerland, 2007).
  10. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (Release 8), 3GPP TS 36.101 V8.8.0 (2009).
  11. IEEE 802.16, Part 16: Air Interface for Fixed Broadband Wireless Access Systems, Standard for local and metropolitan area networks (2009).
  12. A. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper PDP 39. [CrossRef]
  13. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42, 587–589 (2006). [CrossRef]
  14. J. Tang, P. Lane, and K. Shore, “30 Gbit/s transmission over 40 km directly modulated DFB laser-based SMF links without optical amplification and dispersion compensation for VSR and metro applications,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper JThB8. [CrossRef]
  15. N. Cvijetic, M. Huang, E. Ip, Y. Huang, D. Qian, and T. Wang, “1.2 Tb/s symmetric WDM-OFDMA-PON over 90km straight SSMF and 1:32 passive split with digitally-selective ONUs and coherent receiver OLT,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper PDPD7.
  16. T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio signals distribution in long-reach PONs using Mach-Zehnder and linearized modulators,” IEEE J. Sel. Areas Commun.16, 1311–1320 (2011). [CrossRef]
  17. R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett.20, 945–947 (2008). [CrossRef]
  18. C. Rodrigues, A. Gamelas, F. Carvalho, and A. Cartaxo, “Evolution of FTTH networks based on radio-over-fibre,” in International Conference on Transparent Optical Networks, Stockholm, Sweden (2011), paper Tu.B6.6.
  19. Fully-converged quintuple-play integrated optical-wireless access architectures, http://www.ict-fiver.eu/index.php .
  20. T. Alves and A. Cartaxo, “Distribution of double-sideband OFDM-UWB radio signals in dispersion compensated long-reach PONs,” J. Lightwave Technol.29, 2467–2474 (2011). [CrossRef]
  21. C. Chow, C. Yeh, C. Wang, F. Shih, C. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express16, 12096–12101 (2008). [CrossRef] [PubMed]
  22. J. Tang, P. Lane, and K. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett.18, 205–207 (2006). [CrossRef]
  23. T. Duong, N. Genay, M. Ouzzif, J. Masson, B. Charbonnier, P. Chanclou, and J. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett.21, 790–792 (2009). [CrossRef]
  24. T. Ellermeyer, R. Schmid, A. Bielik, J. Rupeter, and M. Möller, “DA and AD converters in SiGe technology: speed and resolution for ultra high data rate applications,” in European Conference and Exhibition on Optical Communication, paper Th.10.A.6. (2010). [CrossRef]
  25. M. Morant, T. Alves, A. Cartaxo, and R. Llorente, “Transmission impairment compensation using broadband channel sounding in multi-format OFDM-based long-reach PONs,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2012), paper OW3B.2.
  26. T. Alves and A. Cartaxo, “Performance degradation due to OFDM-UWB radio signal transmission along dispersive single-mode fiber,” IEEE Photon. Technol. Lett.21, 158–160 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited