OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13762–13768

Amplification of multi-gigawatt 3 ps pulses in an atmospheric CO2 laser using ac Stark effect

S. Ya. Tochitsky, J. J. Pigeon, D. J. Haberberger, C. Gong, and C. Joshi  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 13762-13768 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1102 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The 3 ps pulses are amplified to ~20 GW peak power in a TEA CO2 laser using ac Stark broadening. Demonstration of such broadband coherent amplification of 10 μm pulses opens opportunities for a powerful mid-IR source at a high-repetition rate.

© 2012 OSA

OCIS Codes
(020.6580) Atomic and molecular physics : Stark effect
(140.3470) Lasers and laser optics : Lasers, carbon dioxide
(190.5940) Nonlinear optics : Self-action effects

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 4, 2012
Revised Manuscript: April 25, 2012
Manuscript Accepted: April 26, 2012
Published: June 5, 2012

S. Ya. Tochitsky, J. J. Pigeon, D. J. Haberberger, C. Gong, and C. Joshi, "Amplification of multi-gigawatt 3 ps pulses in an atmospheric CO2 laser using ac Stark effect," Opt. Express 20, 13762-13768 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Pittman, S. Ferre, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Cheriaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B74(6), 529–535 (2002). [CrossRef]
  2. E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys.81(3), 1229–1285 (2009). [CrossRef]
  3. T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics4(12), 822–833 (2010). [CrossRef]
  4. P. B. Corkum, “Amplification of picosecond 10μm pulses in multiatmosphere CO2 lasers,” IEEE J. Quantum Electron.21(3), 216–232 (1985). [CrossRef]
  5. M. N. Polyanskiy, I. V. Pogorelsky, and V. Yakimenko, “Picosecond pulse amplification in isotopic CO2 active medium,” Opt. Express19(8), 7717–7725 (2011). [CrossRef] [PubMed]
  6. R. C. Panock and R. J. Temkin, “Interaction of two laser fields with a three level molecular system,” IEEE J. Quantum Electron.13(6), 425–434 (1977). [CrossRef]
  7. V. O. Petukhov, S. Ya. Tochitsky, and V. V. Churakov, “Reduction of the optically pumped molecular laser output with increased pump intensity,” Opt. Commun.72(1-2), 87–92 (1989). [CrossRef]
  8. H. Choi, V.-M. Gkortsas, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, F. Capasso, F. X. Kartner, and T. B. Norris, “Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser,” Nat. Photonics4(10), 706–710 (2010). [CrossRef]
  9. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev.100(2), 703–722 (1955). [CrossRef]
  10. R. K. Brimacombe and J. Reid, “Influence of the dynamic Stark effect on the small-signal gain of optically pumped 4.3- μm CO2 lasers,” J. Appl. Phys.58(3), 1141–1145 (1985). [CrossRef]
  11. S. Ya. Tochitsky, C. V. Filip, R. Narang, C. E. Clayton, K. A. Marsh, and C. Joshi, “Efficient shortening of self-chirped picosecond pulses in a high-power CO(2) amplifier,” Opt. Lett.26(11), 813–815 (2001). [CrossRef] [PubMed]
  12. D. Haberberger, S. Ya. Tochitsky, and C. Joshi, “Fifteen terawatt picosecond CO2 laser system,” Opt. Express18(17), 17865–17875 (2010). [CrossRef] [PubMed]
  13. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.110(9-10), 533–572 (2009). [CrossRef]
  14. V. T. Platonenko and V. D. Taranukhin, “Coherent amplification of light pulses in media with a discrete spectrum,” Sov. J. Quantum Electron.13(11), 1459–1466 (1983). [CrossRef]
  15. A. E. Siegman, Lasers (University of Science Books, 1986).
  16. C. V. Filip, R. Narang, S. Ya. Tochitsky, C. E. Clayton, and C. Joshi, “Optical Kerr switching technique for the production of a picosecond, multiwavelength CO2 laser pulse,” Appl. Opt.41(18), 3743–3747 (2002). [CrossRef] [PubMed]
  17. N. H. Burnett, R. D. Kerr, and A. A. Offenberger, “High intensity CO2 laser-plasma interaction,” Opt. Commun.6(4), 372–376 (1972). [CrossRef]
  18. V. A. Gorobets, V. O. Petukhov, S. Y. Tochitski, and V. V. Churakov, “Studies of nonlinear optical characteristics of IR crystals for frequency conversion of TEA CO2 laser radiation,” J. Opt. Technol.66(1), 53–57 (1999). [CrossRef]
  19. H. S. Kwok and E. Yablonovitch, “30-ps CO2 laser pulses generated by optical free induction decay,” Appl. Phys. Lett.30(3), 158–160 (1977). [CrossRef]
  20. A. V. Novikov and V. D. Taranukhin, “Characteristics of the ionization of the active medium of a TEA CO2 laser by high-power picosecond infrared radiation pulses,” Sov. J. Quantum Electron.18(3), 309–313 (1988). [CrossRef]
  21. D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R. A. Fonseca, L. O. Silva, W. B. Mori, and C. Joshi, “Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams,” Nat. Phys.8(1), 95–99 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited