OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13777–13788

Nanoscale all-normal dispersion optical fibers for coherent supercontinuum generation at ultraviolet wavelengths

Alexander Hartung, Alexander M. Heidt, and Hartmut Bartelt  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 13777-13788 (2012)
http://dx.doi.org/10.1364/OE.20.013777


View Full Text Article

Enhanced HTML    Acrobat PDF (1632 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the possibilities of nanoscale optical fibers with all-normal dispersion behavior for pulse-preserving and coherent supercontinuum generation at deep ultraviolet wavelengths. We discuss the influence of important parameters such as pump wavelength and fiber diameter, for both optical nanofibers and nanoscale suspended-core optical fibers. Simulations reveal that by appropriate combination of fiber geometry and input pulse parameters, intensive spectral components well below 300 nm are generated. In addition, the impact of preceding taper transitions used for input coupling purposes is discussed in detail.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 26, 2012
Revised Manuscript: May 24, 2012
Manuscript Accepted: May 24, 2012
Published: June 5, 2012

Citation
Alexander Hartung, Alexander M. Heidt, and Hartmut Bartelt, "Nanoscale all-normal dispersion optical fibers for coherent supercontinuum generation at ultraviolet wavelengths," Opt. Express 20, 13777-13788 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-13777


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron.36(7), 773–779 (2000). [CrossRef]
  2. J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express15(18), 11385–11395 (2007). [CrossRef] [PubMed]
  3. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B: Lasers Opt.92(3), 367–378 (2008). [CrossRef]
  4. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett.26(9), 608–610 (2001). [CrossRef] [PubMed]
  5. K. Saitoh, M. Koshiba, and N. A. Mortensen, “Nonlinear photonic crystal fibers: pushing the zero-dispersion towards the visible,” New J. Phys.8(9), 207–215 (2006). [CrossRef]
  6. P. N. Prasad, Introduction to Biophotonics (John Wiley & Sons, 2003).
  7. J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B77(2-3), 291–298 (2003). [CrossRef]
  8. M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, “Increasing the blue-shift of a picosecond pumped supercontinuum,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, ed. (Cambridge University Press, 2011).
  9. S. P. Stark, A. Podlipensky, N. Y. Joly, and P. S. J. Russell, “Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fibers,” J. Opt. Soc. Am. B27(3), 592–598 (2010). [CrossRef]
  10. S. P. Stark, A. Podlipensky, and P. S. J. Russell, “Soliton blueshift in tapered photonic crystal fibers,” Phys. Rev. Lett.106(8), 083903 (2011). [CrossRef] [PubMed]
  11. J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett.30(23), 3132–3134 (2005). [CrossRef] [PubMed]
  12. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express14(12), 5715–5722 (2006). [CrossRef] [PubMed]
  13. J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt.12(11), 113001 (2010). [CrossRef]
  14. J. Teipel, D. Türke, H. Giessen, A. Zintl, and B. Braun, “Compact multi-Watt picosecond coherent white light sources using multiple-taper fibers,” Opt. Express13(5), 1734–1742 (2005). [CrossRef] [PubMed]
  15. F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett.30(12), 1566–1568 (2005). [CrossRef] [PubMed]
  16. S. P. Stark, J. C. Travers, and P. S. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett.37(5), 770–772 (2012). [CrossRef] [PubMed]
  17. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85(11), 2264–2267 (2000). [CrossRef] [PubMed]
  18. A. M. Heidt, “Pulse preserving flat top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B27(3), 550–559 (2010). [CrossRef]
  19. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express19(4), 3775–3787 (2011). [CrossRef] [PubMed]
  20. A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tünnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express19(15), 13873–13879 (2011). [CrossRef] [PubMed]
  21. S. Demmler, J. Rothhardt, A. Heidt, A. Hartung, E. Rohwer, H. Bartelt, J. Limpert, and A. Tünnermann, “Generation of high quality, 13 cycle pulses by active phase control of an octave spanning supercontinuum,” Opt. Express19, 20151–20158 (2011). [CrossRef] [PubMed]
  22. A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express19(8), 7742–7749 (2011). [CrossRef] [PubMed]
  23. A. M. Heidt, A. Hartung, and H. Bartelt, “Deep ultraviolett supercontinuum generation in optical nanofibers by femtosecond-pulses at 400nm wavelength,” Proc. SPIE7714, 771407, 771407-9 (2010). [CrossRef]
  24. J. Hult, “A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol.25(12), 3770–3775 (2007). [CrossRef]
  25. A. M. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol.27(18), 3984–3991 (2009). [CrossRef]
  26. S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express17(4), 2298–2318 (2009). [CrossRef] [PubMed]
  27. A. Hartung, A. M. Heidt, and H. Bartelt, “Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers,” Opt. Express19(13), 12275–12283 (2011). [CrossRef] [PubMed]
  28. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEE Proc.: Optoelectron.138, 343–354 (1991).
  29. T. A. Birks and Y. W. Li, “The Shape of Fiber Tapers,” J. Lightwave Technol.10(4), 432–438 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited