OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13798–13809

High efficiency optical modulation at a telecom wavelength using the quantum Zeno effect in a ladder transition in Rb atoms

Subramanian Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M. S. Shahriar  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 13798-13809 (2012)
http://dx.doi.org/10.1364/OE.20.013798


View Full Text Article

Enhanced HTML    Acrobat PDF (2229 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a high-efficiency optical modulator at ~1323 nm using the quantum Zeno effect in a ladder transition in a Rb vapor cell. The lower leg of the transitions represents the control beam while the upper leg of the transitions represents the signal beam. The cross-modulation of the signal beam transmission is observed as the control beam is intensity modulated, and is explained in terms of the quantum Zeno effect. We observe a modulation depth of near 100% at frequencies up to 1MHz and demonstrate modulation at speeds up to 75 MHz, with a 3 dB bandwidth of about 5 MHz, limited by the homogeneous linewidth of the intermediate state. We also describe how much higher modulation speeds could be realized by using a buffer gas to broaden the transitions. We identify and explain the special conditions needed for optimizing the modulation efficiency. Numerical simulations of modulation at ~1GHz are presented. The maximum modulation speed is found to scale with the pressure-broadened linewidth of the intermediate state, so that much higher speeds should be attainable.

© 2012 OSA

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(250.4110) Optoelectronics : Modulators

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: April 13, 2012
Revised Manuscript: May 8, 2012
Manuscript Accepted: May 8, 2012
Published: June 5, 2012

Citation
Subramanian Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M. S. Shahriar, "High efficiency optical modulation at a telecom wavelength using the quantum Zeno effect in a ladder transition in Rb atoms," Opt. Express 20, 13798-13809 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-13798


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett.81(17), 3611–3614 (1998). [CrossRef]
  2. R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt.51(16-18), 2441–2448 (2004). [CrossRef]
  3. A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science308(5722), 672–674 (2005). [CrossRef] [PubMed]
  4. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett.102(20), 203902 (2009). [CrossRef] [PubMed]
  5. V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “All-optical modulation of four-wave mixing in an Rb-filled photonic bandgap fiber,” Opt. Lett.35(13), 2287–2289 (2010). [CrossRef] [PubMed]
  6. K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express19(23), 22874–22881 (2011). [CrossRef] [PubMed]
  7. S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett.100(23), 233602 (2008). [CrossRef] [PubMed]
  8. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express12(10), 2258–2263 (2004). [CrossRef] [PubMed]
  9. S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett.105(17), 173602 (2010). [CrossRef] [PubMed]
  10. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett.25(19), 1415–1417 (2000). [CrossRef] [PubMed]
  11. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91(4), 043902 (2003). [CrossRef] [PubMed]
  12. D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys.7(2), 159–165 (2011). [CrossRef]
  13. T. Allsop, F. Floreani, K. P. Jedrzejewski, P. V. S. Marques, R. Romero, D. J. Webb, and I. Bennion, “Spectral characteristics of tapered LPG device as a sensing element for refractive index and temperature,” J. Lightwave Technol.24(2), 870–878 (2006). [CrossRef]
  14. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express13(13), 5087–5092 (2005). [CrossRef] [PubMed]
  15. K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A79(2), 021801 (2009). [CrossRef]
  16. V. G. Minogin and S. N. Chormaic, “Manifestation of the van der Waals surface interaction in the spontaneous emission of atoms into an optical nanofiber,” Laser Phys.20(1), 32–37 (2010). [CrossRef]
  17. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104(20), 203603 (2010). [CrossRef] [PubMed]
  18. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science330(6010), 1520–1523 (2010). [CrossRef] [PubMed]
  19. J. M. Ward, Y. Wu, V. G. Minogin, and S. N. Chormaic, “Trapping of a microsphere pendulum resonator in an optical potential,” Phys. Rev. A79(5), 053839 (2009). [CrossRef]
  20. B. Misra and E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Phys.18(4), 756–763 (1977). [CrossRef]
  21. W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno effect,” Phys. Rev. A41(5), 2295–2300 (1990). [CrossRef] [PubMed]
  22. Y. Huang, J. B. Altepeter, and P. Kumar, “Interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. A82(6), 063826 (2010). [CrossRef]
  23. H. Sasada, “Wavenumber measurements of sub-Doppler spectral lines of Rb at 1.3 pm and 1.5 pm,” IEEE Photon. Technol. Lett.4(11), 1307–1309 (1992). [CrossRef]
  24. H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett.85(18), 3965–3967 (2004). [CrossRef]
  25. J. E. Bjorkholm and P. F. Liao, “Line shape and strength of two-photon absorption in an atomic vapor with a resonant or nearly resonant intermediate state,” Phys. Rev. A14(2), 751–760 (1976). [CrossRef]
  26. B. V. Zhdanov and R. J. Knize, “Progress in alkali lasers development,” Proc. SPIE6874, 68740F, 68740F-12 (2008) (and references therein). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited