OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13847–13856

Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures

Yiling Yu and Linyou Cao  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 13847-13856 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1728 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an intuitive, simple theoretical model, coupled leaky mode theory (CLMT), to analyze the light absorption of 2D, 1D, and 0D semiconductor nanostructures. This model correlates the light absorption of nanostructures to the optical coupling between incident light and leaky modes of the nanostructure. Unlike conventional methods such as Mie theory that requests specific physical features of nanostructures to evaluate the absorption, the CLMT model provides an unprecedented capability to analyze the absorption using eigen values of the leaky modes. Because the eigenvalue shows very mild dependence on the physical features of nanostructures, we can generally apply one set of eigenvalues calculated using a real, constant refractive index to calculations for the absorption of various nanostructures with different sizes, different materials, and wavelength-dependent complex refractive index. This CLMT model is general, simple, yet reasonably accurate, and offers new intuitive physical insights that the light absorption of nanostructures is governed by the coupling efficiency between incident light and leaky modes of the structure.

© 2012 OSA

OCIS Codes
(260.5740) Physical optics : Resonance
(290.4020) Scattering : Mie theory
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: May 1, 2012
Revised Manuscript: May 26, 2012
Manuscript Accepted: May 27, 2012
Published: June 7, 2012

Yiling Yu and Linyou Cao, "Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures," Opt. Express 20, 13847-13856 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  2. P. W. Barber and R. K. Chang, eds., Optical Effects Associated with Small Particles (World Scientific, 1988).
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltais devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef]
  4. L. Novotny and N. Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011). [CrossRef]
  5. L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010). [CrossRef] [PubMed]
  6. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010). [CrossRef]
  7. L. Y. Cao, P. Y. Fan, A. P. Vasudev, J. S. White, Z. F. Yu, W. S. Cai, J. A. Schuller, S. H. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010). [CrossRef] [PubMed]
  8. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  9. L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009). [CrossRef] [PubMed]
  10. L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett.10(7), 2649–2654 (2010). [CrossRef] [PubMed]
  11. A. W. Snyder, Optical Waveguide Theory (Springer, Berlin, 1983).
  12. U. S. Inan and A. S. Inan, Electromagnetic Waves (Prentice Hall, 2000).
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  14. R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A75(5), 053801 (2007). [CrossRef]
  15. Z. C. Ruan and S. H. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C114(16), 7324–7329 (2010). [CrossRef]
  16. H. A. Haus, Wave and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited