OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13878–13885

Application of continuous wavelet transform for determination of fiber birefringence

M. Grabka, S. Pustelny, P. Mergo, and W. Gawlik  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 13878-13885 (2012)
http://dx.doi.org/10.1364/OE.20.013878


View Full Text Article

Enhanced HTML    Acrobat PDF (1768 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Measurements of the group-birefringence dispersion of a microstructured optical fiber using the wavelength-scanning technique are reported. Resulting interferograms are processed using the continuous wavelet transform. We discuss application of this approach for determination of birefringence of few-mode fibers and show that with careful analysis it is possible to determine birefringence dispersion of the higher-order modes in optical fibers.

© 2012 OSA

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(100.7410) Image processing : Wavelets
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 26, 2012
Revised Manuscript: April 18, 2012
Manuscript Accepted: April 24, 2012
Published: June 7, 2012

Citation
M. Grabka, S. Pustelny, P. Mergo, and W. Gawlik, "Application of continuous wavelet transform for determination of fiber birefringence," Opt. Express 20, 13878-13885 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-13878


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ferrando, E. Silvestre, P. Andres, J. Miret, and M. Andres, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express9(13), 687–697 (2001). [CrossRef] [PubMed]
  2. L. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express16(24), 19629–19642 (2008). [CrossRef] [PubMed]
  3. J. R. Hayes, J. C. Flanagan, T. M. Monro, D. J. Richardson, P. Grunewald, and R. Allott, “Square core jacketed air-clad fiber,” Opt. Express14(22), 10345–10350 (2006). [CrossRef] [PubMed]
  4. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett.25(18), 1325–1327 (2000). [CrossRef] [PubMed]
  5. K. Saitoh, Y. Tsuchida, M. Koshiba, and N. A. Mortensen, “Endlessly single-mode holey fibers: the influence of core design,” Opt. Express13(26), 10833–10839 (2005). [CrossRef] [PubMed]
  6. W. J. Wadsworth, R. Percival, G. Bouwmans, J. C. Knight, and P. St. J. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express11(1), 48–53 (2003). [CrossRef] [PubMed]
  7. T. M. Monro, S. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and V. S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16(6), 343–356 (2010). [CrossRef]
  8. Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express15(26), 17819–17826 (2007). [CrossRef] [PubMed]
  9. M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A118, 1127–1132 (2010).
  10. M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett.26(8), 488–490 (2001). [CrossRef] [PubMed]
  11. A. Kumar and A. Ghatak, Polarization of Light with Applications in Optical Fibers (SPIE Press, 2011)
  12. S. R. Norman, D. N. Payne, M. J. Adams, and A. M. Smith, “Fabrication of single-mode fibers exhibiting extremely low polarization birefringence,” Electron. Lett.15(11), 309–311 (1979). [CrossRef]
  13. T. Martynkien, M. Szpulak, G. Statkiewicz, G. Golojuch, J. Olszewski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of sensitivity to hydrostatic pressure and temperature in highly birefringent photonic crystal fibers,” Opt. Quantum Electron.39(4-6), 481–489 (2007). [CrossRef]
  14. P. Hlubina, “Measuring dispersion between modes of an optical fibre using time-domain and spectral-domain low-coherence interferometry,” J. Mod. Opt.45(9), 1767–1774 (1998). [CrossRef]
  15. P. Hlubina, D. Ciprian, and M. Kadulova, “Wide spectral range measurement of modal birefringence in polarization-maintaining fibres,” Meas. Sci. Technol.20(2), 025301 (2009). [CrossRef]
  16. S. C. Rashleigh, “Measurement of fiber birefringence by wavelength scanning: effect of dispersion,” Opt. Lett.8(6), 336–338 (1983). [CrossRef] [PubMed]
  17. P. Hlubina, T. Martynkien, and W. Urbańczyk, “Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry,” Opt. Express11(22), 2793–2798 (2003). [PubMed]
  18. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett.25(18), 1325–1327 (2000). [CrossRef] [PubMed]
  19. J. Wojcik, P. Mergo, M. Makara, K. Poturaj, L. Czyzewska, J. Klimek, and A. Walewski, “Technology of suspended core microstructured optical fibers for evanescent wave and plasmon resonance optical fiber sensor,” Proc. SPIE6990, 6990T (2008).
  20. C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Transforms: A Primer, (Prentice Hall, 1997)
  21. O. Koysal, S. E. San, S. Ozder, and F. N. Ecevit “A novel approach for the determination of birefringence dispersion in nematic liquid crystals by using the continuous wavelet transform,” Meas. Sci. Technol.14(6), 790–795 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited