OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13896–13906

Scattering cancellation of the magnetic dipole field from macroscopic spheres

M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 13896-13906 (2012)
http://dx.doi.org/10.1364/OE.20.013896


View Full Text Article

Enhanced HTML    Acrobat PDF (3070 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the scattering cancellation technique we suggest a cloak that allows to conceal macroscopic objects, i.e. objects with an optical size comparable to wavelengths in the visible and whose scattering response is dominated by a magnetic dipole contribution. The key idea in our approach is to use a shell of polaritonic spheres around the object to be cloaked. These spheres exhibit an artificial magnetism. In a systematic investigation, where we progressively increase the complexity of the considered structure, we devise the requirements imposed on the shell and outline how it can be implemented with natural available materials.

© 2012 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(160.3918) Materials : Metamaterials
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Metamaterials

History
Original Manuscript: March 12, 2012
Revised Manuscript: April 30, 2012
Manuscript Accepted: May 21, 2012
Published: June 7, 2012

Citation
M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, "Scattering cancellation of the magnetic dipole field from macroscopic spheres," Opt. Express 20, 13896-13906 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-13896


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47, 2075–2084 (1999). [CrossRef]
  2. D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006). [CrossRef] [PubMed]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312, 1780–1782 (2006). [CrossRef] [PubMed]
  4. N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express15, 6314–6323 (2007). [CrossRef] [PubMed]
  5. M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, “Achieving invisibility over a finite range of frequencies,” Opt. Express16, 5656–5661 (2008). [CrossRef] [PubMed]
  6. S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, and N. A. P. Nicorovici, “The colours of cloaks,” J. Opt.13, 024014 (2011). [CrossRef]
  7. W. Cai, U. K. Chettiar, A. V. Kildiev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1, 224–227 (2007). [CrossRef]
  8. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101, 203901 (2008). [CrossRef] [PubMed]
  9. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater.8, 568–571 (2009). [CrossRef]
  10. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010). [CrossRef] [PubMed]
  11. J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett.36, 2059–2061 (2011). [CrossRef] [PubMed]
  12. T. Ergin, J. Fischer, and M. Wegener, “Optical phase cloaking of 700 nm lightWaves in the far field by a three-dimensional carpet cloak,” Phys. Rev. Lett.107, 173901 (2011). [CrossRef] [PubMed]
  13. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E72, 016623 (2005). [CrossRef]
  14. A. Alù and N. Engheta, “Cloaking a sensor, ” Phys. Rev. Lett.102, 233901 (2009). [CrossRef] [PubMed]
  15. A. Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett.105, 263906 (2010). [CrossRef]
  16. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies,” Phys. Rev. Lett.103, 153901 (2009). [CrossRef] [PubMed]
  17. D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14, 013054 (2012). [CrossRef]
  18. S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B83, 195116 (2011).
  19. A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett.36, 4479–4481 (2011). [CrossRef] [PubMed]
  20. A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun., http://dx.doi.org/10.1016/j.optcom.2011.12.037 (2012).
  21. A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B80, 245115 (2009). [CrossRef]
  22. P. Y. Chen and A. Alù, “Atomically-thin surface cloak using graphene monolayers,” ACS Nano5, 5855–5863 (2011). [CrossRef] [PubMed]
  23. P. Y. Chen, M. Farhat, S. Guenneau, S. Enoch, and A. Alù, “Acoustic scattering cancellation via ultrathin pseudo-surface,” Appl. Phys. Lett.99, 191913 (2011).
  24. A. Garcia-Etxarri, R. Gómez-Medina, L. S. Froufe-Perez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron Silicon particles in the infrared,” Opt. Express19, 4815–4826 (2011). [CrossRef] [PubMed]
  25. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B72, 193103 (2005). [CrossRef]
  26. K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, “Negative effective permeability in polaritonic photonic crystals,” Appl. Phys. Lett.85, 543–545 (2004). [CrossRef]
  27. K. Vynck, D. Felbacq, E. Centeno, A. I. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett.102, 133901 (2009). [CrossRef] [PubMed]
  28. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B84, 235429 (2011). [CrossRef]
  29. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett.99, 107401 (2007). [CrossRef] [PubMed]
  30. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010). [CrossRef]
  31. S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B84, 035128 (2011). [CrossRef]
  32. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett.98, 157403 (2007). [CrossRef] [PubMed]
  33. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter17, 3717–3734 (2005). [CrossRef]
  34. V. Yannopapas, “Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices,” Phys. Status Solidi (RRL)1, 208–210 (2007). [CrossRef]
  35. S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B81, 075317 (2010). [CrossRef]
  36. K. Kanie, M. Matsubara, X. Zeng, F. Liu, G. Ungar, H. Nakamura, and A. Muramatsu, “Simple cubic packing of gold nanoparticles through rational design of their dendrimeric corona,” J. Am. Chem. Soc.134, 808–811 (2012). [CrossRef]
  37. A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C115, 8955–8960 (2011). [CrossRef]
  38. X. B. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D ordered gold strings by coating nanoparticles with mesogens,” Adv. Mater.21, 1746–1750 (2009). [CrossRef]
  39. R. Caputo, L. De Sio, J. Dintinger, H. Sellame, T. Scharf, and C. P. Umeton, “Realization and characterization of POLICRYPS-like structures including metallic subentities,” Mol. Cryst. Liq. Cryst.553, 111–117 (2012). [CrossRef]
  40. S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano5, 6586–6592 (2011). [CrossRef] [PubMed]
  41. C. Rockstuhl, C. Menzel, S. Mühlig, J. Petschulat, C. Helgert, C. Etrich, A. Chipouline, T. Pertsch, and F. Lederer, “Scattering properties of meta-atoms,” Phys. Rev. B83, 245119 (2011). [CrossRef]
  42. C. Menzel, S. Mühlig, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials5, 64–73 (2011). [CrossRef]
  43. W. Challener, I. Sendur, and C. Peng, “Scattered field formulation of finite difference time domain for a focused light beam in dense media with lossy materials,” Opt. Express11, 3160–3170 (2003). [CrossRef] [PubMed]
  44. J.D. Jackson, Classical electrodynamics, 3rd ed. (Wiley, 1999).
  45. A. Sihvola, Electromagnetic Mixing Formulas and Applications (IEE Publication Series, 2000).
  46. M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E72, 046604 (2005). [CrossRef]
  47. D. V. Goia, Z. Crnjak-Orel, and E. Matijevic, “Precipitation and recrystallization of uniform CuCl particles formed by aggregation of nanosize precursors,” Colloid Polymer Sci.281, 754–759 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited