OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13915–13922

Achromatic lens based on a nanowire material with anomalous dispersion

João T. Costa and Mário G. Silveirinha  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 13915-13922 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (4490 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Achromatic doublets made of materials with normal dispersion have been used for decades to minimize the effects of chromatic aberrations inherent to single-glass optical lenses. Here, we propose a fundamentally different solution to correct the chromatic aberrations based on a nanowire metamaterial with low loss broadband anomalous dispersion in the visible domain. It is theoretically and numerically shown that the proposed metamaterial lens practically eliminates the chromatic aberrations for all the colors of light, and may be an interesting alternative to conventional achromatic doublets.

© 2012 OSA

OCIS Codes
(080.3630) Geometric optics : Lenses
(220.1000) Optical design and fabrication : Aberration compensation
(160.3918) Materials : Metamaterials

ToC Category:
Optical Design and Fabrication

Original Manuscript: March 22, 2012
Revised Manuscript: April 27, 2012
Manuscript Accepted: April 27, 2012
Published: June 7, 2012

João T. Costa and Mário G. Silveirinha, "Achromatic lens based on a nanowire material with anomalous dispersion," Opt. Express 20, 13915-13922 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and M. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, 1999).
  2. . Newton, “A Letter of Mr. Isaac Newton, Professor of the Mathematicks in the University of Cambridge; Containing His New Theory about Light and Colors: Sent by the Author to the Publisher from Cambridge, Febr. 6. 1671/72; In Order to be Communicated to the R. Society,” Philos. Trans. R. Soc. Lond.6(69-80), 3075–3087 (1671). [CrossRef]
  3. L. D. Landau, E. Lifshitz, and L. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed. (Elsevier Butterworth-Heinemann, 2004).
  4. T. T. Smith, “The color correction of an achromatic doublet,” J. Opt. Soc. Am.10(1), 39–62 (1925). [CrossRef]
  5. T. T. Smith, “The color correction of an achromatic doublet II,” J. Opt. Soc. Am.15(5), 247–254 (1927). [CrossRef]
  6. R. G. Treuting, “An achromatic doublet of silicon and germanium,” J. Opt. Soc. Am.41(7), 454–456 (1951). [CrossRef] [PubMed]
  7. M. Herzberger and N. R. McClure, “The design of superachromatic lenses,” Appl. Opt.2(6), 553–560 (1963). [CrossRef]
  8. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  9. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  10. T. A. Morgado, J. S. Marcos, M. G. Silveirinha, and S. I. Maslovski, “Ultraconfined interlaced plasmons,” Phys. Rev. Lett.107(6), 063903 (2011). [CrossRef] [PubMed]
  11. A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett.102(23), 233901 (2009). [CrossRef] [PubMed]
  12. M. G. Silveirinha, “Anomalous refraction of light colors by a metamaterial prism,” Phys. Rev. Lett.102(19), 193903 (2009). [CrossRef] [PubMed]
  13. M. G. Silveirinha and C. A. Fernandes, “Nonresonant structured material with extreme effective parameters,” Phys. Rev. B78(3), 033108 (2008). [CrossRef]
  14. M. A. Ordal, R. J. Bell, R. W. Alexander,, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24(24), 4493–4499 (1985). [CrossRef] [PubMed]
  15. K. Yasumoto, Electromagnetic Theory and Applications for Photonic Crystals (Taylor and Francis, 2006).
  16. J. M. McMahon, S. K. Gray, and G. C. Schatz, “Nonlocal optical response of metal nanostructures with arbitrary shape,” Phys. Rev. Lett.103(9), 097403 (2009). [CrossRef] [PubMed]
  17. Y. Zhao, P. A. Belov, and Y. Hao, “Modelling of wave propagation in wire media using spatially dispersive finite-difference time-domain method: numerical aspects,” IEEE Trans. Antenn. Propag.55(6), 1506–1513 (2007). [CrossRef]
  18. J. T. Costa and M. G. Silveirinha, “Macroscopic electromagnetic response of arbitrarily shaped spatially dispersive bodies formed by metallic wires,” arXiv:1205.1760v1 [physics.comp-ph], (2012).
  19. F. A. Jenkins and H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, 1981).
  20. CST Microwave Studio SuiteTM2010, ( http://www.cst.com ).
  21. OSA, Handbook of Optics, 2nd ed. (McGraw-Hill Professional, 1994), vol. II.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited