OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13923–13938

Modeling of molecular reorientation and beam propagation in chiral and non-chiral nematic liquid crystals

Filip A. Sala and Miroslaw A. Karpierz  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 13923-13938 (2012)
http://dx.doi.org/10.1364/OE.20.013923


View Full Text Article

Enhanced HTML    Acrobat PDF (2054 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The exact molecular reorientation model for nematic liquid crystals taking into account all diagonal Frank elastic constants and using two angles to describe director orientation is presented. Solutions and simplified equations are shown for the most common planar and chiral configurations. Gaussian beam propagation simulated using fully vectorial Beam Propagation Method in nonlinear case is also provided. Detailed comparison between exact solutions and single Frank constant approximation is made. However, no significant differences between these two models were found neither in beam propagation nor in polarization distribution, some difficulties may occur in choosing single Frank constant especially when it comes to quantitative results. Presented results correspond to a propagation of a beam of the Gaussian or topologically similar shapes.

© 2012 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Materials

History
Original Manuscript: March 26, 2012
Revised Manuscript: April 27, 2012
Manuscript Accepted: April 29, 2012
Published: June 7, 2012

Citation
Filip A. Sala and Miroslaw A. Karpierz, "Modeling of molecular reorientation and beam propagation in chiral and non-chiral nematic liquid crystals," Opt. Express 20, 13923-13938 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-13923


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. W. Berreman and W. R. Heffner, “New bistable cholesteric liquid-crystal display,” Appl. Phys. Lett.37, 109–111 (1980). [CrossRef]
  2. S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett.91, 131119 (2007). [CrossRef]
  3. B. Bahadur, Liquid Crystals: Applications and Uses (World Scientific Publishing Co. Pte. Ltd., 1995).
  4. G. Assanto, M. Peccianti, and C. Conti, “Nematicons: Optical spatial solitons in nematic liquid crystals,” Opt. Photonics News14, 44–48 (2003). [CrossRef]
  5. A. Alberucci, A. Piccardi, M. Peccianti, M. Kaczmarek, and G. Assanto, “Propagation of spatial optical solitons in a dielectric with adjustable nonlinearity,” Phys. Rev. A82, 023806 (2010). [CrossRef]
  6. G. Assanto and M. A. Karpierz, “Nematicons: self-localised beams in nematic liquid crystals,” Liq. Cryst.36, 1161–1172 (2009). [CrossRef]
  7. Y. V. Izdebskaya, A. S. Desyatnikov, G. Assanto, and Y. S. Kivshar, “Multimode nematicon waveguides,” Opt. Lett.36, 184–186 (2011). [CrossRef] [PubMed]
  8. C. Conti, M. Peccianti, and G. Assanto, “Route to nonlocality and observation of accessible solitons,” Phys. Rev. Lett.91, 073901 (2003). [CrossRef] [PubMed]
  9. F. A. Sala and M. A. Karpierz, “Numerical simulation of beam propagation in a layer filled with chiral nematic liquid crystals,” Photon. Lett. Pol.1, 163–165 (2009).
  10. A. Alberucci and G. Assanto, “Propagation of optical spatial solitons in finite-size media: interplay between nonlocality and boundary conditions,” J. Opt. Soc. Am. B24, 2314–2320 (2007). [CrossRef]
  11. P. J. M. Vanbrabant, J. Beeckman, K. Neyts, R. James, and F. A. Fernandez, “A finite element beam propagation method for simulation of liquid crystal devices,” Opt. Express17, 10895–10909 (2009). [CrossRef] [PubMed]
  12. J. Beeckman, K. Neyts, P. Vanbrabant, R. James, and F. Fernandez, “Finding exact spatial soliton profiles in nematic liquid crystals,” Opt. Express18, 3311–3321 (2010). [CrossRef] [PubMed]
  13. G. D. Ziogos and E. E. Kriezis, “Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method,” Opt. Quantum Electron.40, 733–748 (2008). [CrossRef]
  14. J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys.10, 129–160 (1976). [CrossRef]
  15. B. Y. Zel’dovich and N. V. Tabiryan, “Orientational optical nonlinearity of liquid crystals,” Sov. Phys. Usp.28, 1059–1083 (1985). [CrossRef]
  16. U. A. Laudyn, K. Jaworowicz, and M. A. Karpierz, “Spatial solitons in chiral nematics,” Mol. Cryst. Liq. Cryst.489, 214–221 (2008). [CrossRef]
  17. M. Peccianti, A. Dyadyusha, M. Kaczmarek, and G. Assanto, “Tunable refraction and reflection of self-confined light beams,” Nat. Phys.2, 737–742 (2006). [CrossRef]
  18. M. Peccianti, A. Dyadyusha, M. Kaczmarek, and G. Assanto, “Escaping solitons from a trapping potential,” Phys. Rev. Lett.101, 153902 (2008). [CrossRef] [PubMed]
  19. F. A. Sala and M. A. Karpierz, “Chiral and non-chiral nematic liquid crystal reorientation induced by inhomogeneous electric fields,” J. Opt. Soc. Am. B29 (submitted) (2012).
  20. F. A. Sala and M. A. Karpierz, “Modeling of nonlinear beam propagation in chiral nematic liquid crystals,” Mol. Cryst. Liq. Cryst.558, 176–183 (2012) [CrossRef]
  21. I.-C. Khoo, Liquid Crystals (John Wiley and Sons, 2007). [CrossRef]
  22. F. C. Frank, “I. Liquid crystals. On the theory of liquid crystals,” Discuss. Faraday Soc.25, 19–28 (1958). [CrossRef]
  23. C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc.29, 883–899 (1933). [CrossRef]
  24. W. Baran, Z. Raszewski, R. Dabrowski, and J. Kedzierski, “Some physical properties of mesogenic 4-(trans-4’-n-alkylcyclohexyl) isothiocyanatobenzenes,” Mol. Cryst. Liq. Cryst.123, 237–245 (1985). [CrossRef]
  25. R. Dabrowski, J. Dziaduszek, and T. Szczucinski, “Mesomorphic characteristics of some new homologous series with the isothiocyanato terminal group,” Mol. Cryst. Liq. Cryst.124, 241–257 (1985). [CrossRef]
  26. D. M. Young, “Iterative methods for solving partial difference equations of elliptical type,” PhD thesis, Harvard University (1950).
  27. L. Hageman and D. Young, Applied Iterative Methods (Academic Press, 1981).
  28. P. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited