OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13947–13957

Phase measurement using an optical vortex lattice produced with a three-beam interferometer

Samuel A. Eastwood, Alexis I. Bishop, Timothy C. Petersen, David M. Paganin, and Michael J. Morgan  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 13947-13957 (2012)
http://dx.doi.org/10.1364/OE.20.013947


View Full Text Article

Enhanced HTML    Acrobat PDF (2239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new phase-measurement technique is proposed, which utilizes a three-beam interferometer. Three-wave interference in the interferometer generates a uniform lattice of optical vortices, which is distorted by the presence of an object inserted in one arm of the interferometer. The transverse displacement of the vortices is proportional to the phase shift in the object wave. Tracking the vortices permits the phase of the object to be reconstructed. We demonstrate the method experimentally using a simple lens and a more complex object, namely the wing of a common house fly. Since the technique is implemented in real space, it is capable of reconstructing the phase locally.

© 2012 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(050.4865) Diffraction and gratings : Optical vortices
(100.5088) Image processing : Phase unwrapping
(260.6042) Physical optics : Singular optics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: March 29, 2012
Revised Manuscript: April 27, 2012
Manuscript Accepted: April 30, 2012
Published: June 8, 2012

Citation
Samuel A. Eastwood, Alexis I. Bishop, Timothy C. Petersen, David M. Paganin, and Michael J. Morgan, "Phase measurement using an optical vortex lattice produced with a three-beam interferometer," Opt. Express 20, 13947-13957 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-13947


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. O. Heflinger, R. F. Wuerker, and R. E. Brooks, “Holographic interferometry,” J. Appl. Phys.37(2), 642–649 (1966). [CrossRef]
  2. M. Zhan, K. Li, P. Wang, L. Kong, X. Wang, R. Li, X. Tu, L. He, J. Wang, and B. Lu, “Cold atom interferometry,” J. Phys.: Conf. Ser. 80, 012047 (2007).
  3. A. Tonomura, T. Matsuda, J. Endo, T. Arii, and K. Mihama, “Holographic interference electron microscopy for determining specimen magnetic structure and thickness distribution,” Phys. Rev. B Condens. Matter34(5), 3397–3402 (1986). [CrossRef] [PubMed]
  4. U. Bonse and M. Hart, “An X-ray interferometer,” Appl. Phys. Lett.6(8), 155–156 (1965). [CrossRef]
  5. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am.72(1), 156–160 (1982). [CrossRef]
  6. P. Senthilkumaran, J. Masajada, and S. Sato, “Interferometry with vortices,” Int. J. Opt.2012, 517591 (2012). [CrossRef]
  7. A. Popiołek-Masajada, M. Borwinska, and B. Dubik, “Reconstruction of a plane wave’s tilt and orientation using an optical vortex interferometer,” Opt. Eng.46(7), 073604 (2007). [CrossRef]
  8. J. Masajada, “Small-angle rotations measurement using optical vortex interferometer,” Opt. Commun.239(4-6), 373–381 (2004). [CrossRef]
  9. M. Borwińska, A. Popiołek-Masajada, and P. Kurzynowski, “Measurements of birefringent media properties using optical vortex birefringence compensator,” Appl. Opt.46(25), 6419–6426 (2007). [CrossRef] [PubMed]
  10. W. A. Woźniak and M. Banach, “Measurements of linearly birefringent media parameters using the optical vortex interferometer with the Wollaston compensator,” J. Opt. A, Pure Appl. Opt.11(9), 094024 (2009). [CrossRef]
  11. W. Fraczek and J. Mroczka, “Optical vortices as phase markers to wave-front deformation measurement,” Metrol. Meas. Syst.15, 433–440 (2008).
  12. D. M. Paganin, Coherent X-Ray Optics (Clarendon Press, 2006).
  13. K. W. Nicholls and J. F. Nye, “Three-beam model for studying dislocations in wave pulses,” J. Phys. Math. Gen.20(14), 4673–4696 (1987). [CrossRef]
  14. J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Opt. Commun.198(1-3), 21–27 (2001). [CrossRef]
  15. K. O’Holleran, M. J. Padgett, and M. R. Dennis, “Topology of optical vortex lines formed by the interference of three, four, and five plane waves,” Opt. Express14(7), 3039–3044 (2006). [CrossRef] [PubMed]
  16. G. Ruben and D. M. Paganin, “Phase vortices from a Young’s three-pinhole interferometer,” Phys. Rev. E 75(6), 066613 (2007). [CrossRef] [PubMed]
  17. S. Vyas and P. Senthilkumaran, “Interferometric optical vortex array generator,” Appl. Opt.46(15), 2893–2898 (2007). [CrossRef] [PubMed]
  18. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A336(1605), 165–190 (1974). [CrossRef]
  19. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun.112(5-6), 321–327 (1994). [CrossRef]
  20. J. Verbeeck, H. Tian, and P. Schattschneider, “Production and application of electron vortex beams,” Nature467(7313), 301–304 (2010). [CrossRef] [PubMed]
  21. A. Popiołek-Masajada and W. Frączek, “Evaluation of a phase shifting method for vortex localization in optical vortex interferometery,” Opt. Laser Technol.43(7), 1219–1224 (2011). [CrossRef]
  22. E. Frączek, W. Fraczek, and J. Mroczka, “Experimental method for topological charge determination of optical vortices in a regular net,” Opt. Eng.44(2), 025601 (2005). [CrossRef]
  23. V. V. Volkov and Y. Zhu, “Deterministic phase unwrapping in the presence of noise,” Opt. Lett.28(22), 2156–2158 (2003). [CrossRef] [PubMed]
  24. L. J. Allen, H. M. Faulkner, K. A. Nugent, M. P. Oxley, and D. Paganin, “Phase retrieval from images in the presence of first-order vortices,” Phys. Rev. E63(3), 037602 (2001). [CrossRef] [PubMed]
  25. I. Freund and N. Shvartsman, “Wave-field phase singularities: The sign principle,” Phys. Rev. A50(6), 5164–5172 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited