OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13977–13987

Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals

Masayuki Okano, Ryo Okamoto, Akira Tanaka, Shanthi Subashchandran, and Shigeki Takeuchi  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 13977-13987 (2012)
http://dx.doi.org/10.1364/OE.20.013977


View Full Text Article

Enhanced HTML    Acrobat PDF (1089 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel method for generating broadband spontaneous parametric fluorescence by using a set of bulk nonlinear crystals (NLCs). We also demonstrate this scheme experimentally. Our method employs a superposition of spontaneous parametric fluorescence spectra generated using multiple bulk NLCs. A typical bandwidth of 160 nm (73 THz) with a degenerate wavelength of 808 nm was achieved using two β-barium-borate (BBO) crystals, whereas a typical bandwidth of 75 nm (34 THz) was realized using a single BBO crystal. We also observed coincidence counts of generated photon pairs in a non-collinear configuration. The bandwidth could be further broadened by increasing the number of NLCs. Our demonstration suggests that a set of four BBO crystals could realize a bandwidth of approximately 215 nm (100 THz). We also discuss the stability of Hong-Ou-Mandel two-photon interference between the parametric fluorescence generated by this scheme. Our simple scheme is easy to implement with conventional NLCs and does not require special devices.

© 2012 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

History
Original Manuscript: April 26, 2012
Revised Manuscript: May 18, 2012
Manuscript Accepted: May 21, 2012
Published: June 8, 2012

Citation
Masayuki Okano, Ryo Okamoto, Akira Tanaka, Shanthi Subashchandran, and Shigeki Takeuchi, "Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals," Opt. Express 20, 13977-13987 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-13977


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409(6816), 46–52 (2001). [CrossRef] [PubMed]
  2. L. -M. Duan, M. Lukin, J. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414(6862), 413–418 (2001). [CrossRef] [PubMed]
  3. S. E. Harris, “Chirp and compress: Toward single-cycle biphotons,” Phys. Rev. Lett.98(6), 063602 (2007). [CrossRef] [PubMed]
  4. G. Brida, V. Caricato, M. V. Fedorov, M. Genovese, M. Gramegna, and S. P. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett.87(6), 64003 (2009). [CrossRef]
  5. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett.91(8), 083601 (2003). [CrossRef] [PubMed]
  6. B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Two photon absorption and coherent control with broadband down-converted light,” Phys. Rev. Lett.93(2), 023005 (2004). [CrossRef] [PubMed]
  7. S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett.105(17), 173602 (2010). [CrossRef]
  8. V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock synchronization with dispersion cancellation,” Phys. Rev. Lett.87(11), 117902 (2001). [CrossRef] [PubMed]
  9. N. Mohan, O. Minaeva, G. Goltsman, M. Saleh, M. Nasr, A. Sergienko, B. Saleh, and M. Teich, “Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm,” Appl. Opt.48(20), 4009–4017 (2009). [CrossRef] [PubMed]
  10. M. Nasr, S. Carrasco, B. Saleh, A. Sergienko, M. Teich, J. Torres, L. Torner, D. Hum, and M. Fejer, “Ultra-broadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett.100(18), 183601 (2008). [CrossRef] [PubMed]
  11. A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express19(1), 55–65 (2011). [CrossRef]
  12. K. G. Katamadze and S. P. Kulik, “Control of the spectrum of the biphoton field,” JETP112(1), 20–37 (2011). [CrossRef]
  13. E. Dauler, G. Jaeger, A. Muller, A. Migdall, and A. Sergienko, “Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision,” J. Res. Natl. Inst. Stand. Technol.104(1), 1–10 (1999). [CrossRef]
  14. S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Broadband light generation by non-collinear parametric downconversion,” Opt. Lett.31(2), 253–255 (2006). [CrossRef] [PubMed]
  15. M. Hendrych, X. Shi, A. Valencia, and J. Torres, “Broadening the bandwidth of entangled photons: A step towards the generation of extremely short biphotons,” Phys. Rev. A79(2), 023817 (2009). [CrossRef]
  16. K. O’Donnell and A. U’Ren, “Observation of ultrabroadband, beamlike parametric downconversion,” Opt. Lett.32(7), 817–819 (2007). [CrossRef]
  17. C. Hong, Z. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59(18), 2044–2046 (1987). [CrossRef] [PubMed]
  18. R. Boyd, Nonlinear optics (Academic Press, 2003).
  19. S. Baek and Y. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-i spontaneous parametric down-conversion,” Phys. Rev. A77(4), 043807 (2008). [CrossRef]
  20. G. D. Giuseppe, M. Atatüre, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon generation from parametric down-conversion in media with inhomogeneous nonlinearity,” Phys. Rev. A66(1), 013801 (2002). [CrossRef]
  21. Y. -H. Kim, S. P. Kulik, and Y. Shih, “High-intensity pulsed source of space-time and polarization double-entangled photon pairs,” Phys. Rev. A62(1), 011802 (2000). [CrossRef]
  22. R. Rangarajan, M. Goggin, and P. Kwiat, “Optimizing type-I polarization-entangled photons,” Opt. Express17(21), 18920–18933 (2009). [CrossRef]
  23. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60(2), R773–R776 (1999). [CrossRef]
  24. Y. Kawabe, H. Fujiwara, R. Okamoto, K. Sasaki, and S. Takeuchi, “Quantum interference fringes beating the diffraction limit,” Opt. Express15(21), 14244–14250 (2007). [CrossRef] [PubMed]
  25. H. Fujiwara, Y. Kawabe, R. Okamoto, S. Takeuchi, and K. Sasaki, “Quantum lithography under imperfect conditions effects of loss and dephasing on two-photon interference fringes,” J. Opt. Soc. Am. B28(3), 422–431 (2011). [CrossRef]
  26. M. Atatüre, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entanglement in cascaded-crystal parametric down-conversion,” Phys. Rev. Lett.86(18), 4013–4016 (2002). [CrossRef]
  27. A. Steinberg, P. Kwiat, and R. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A45(9), 6659–6665 (1992). [CrossRef] [PubMed]
  28. A. Pe’er, Y. Bromberg, B. Dayan, Y. Silberberg, and A. A. Friesem, “Broadband sum-frequency generation as an efficient two-photon detector for optical tomography,” Opt. Express15(14), 8760–8769 (2007). [CrossRef]
  29. R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys.4(11), 864–868 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited