OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13988–13995

Self-induced transparency quadratic solitons

Soodeh Haghgoo and Sergey A. Ponomarenko  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 13988-13995 (2012)
http://dx.doi.org/10.1364/OE.20.013988


View Full Text Article

Enhanced HTML    Acrobat PDF (1357 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We discover and theoretically explore self-induced transparency quadratic solitons (SIT-QS) supported by the media with quadratic optical nonlinearities, doped with resonant impurities. The fundamental frequency of input pulses is assumed to be close to the impurity resonance. We envision an ensemble of inhomogeneously broadened semiconductor quantum dots (QD) in the strong confinement regime grown on a substrate with a quadratic nonlinearity to be a promising candidate for the laboratory realization of SIT-QS. We also examine the influence of inhomogeneous broadening as well as wave number and group-velocity mismatches on the salient properties of the introduced solitons.

© 2012 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(260.0260) Physical optics : Physical optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 26, 2012
Revised Manuscript: May 22, 2012
Manuscript Accepted: May 23, 2012
Published: June 8, 2012

Citation
Soodeh Haghgoo and Sergey A. Ponomarenko, "Self-induced transparency quadratic solitons," Opt. Express 20, 13988-13995 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-13988


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974).
  2. G. B. Lamb, Elements of Soliton Theory (Wiley, New York, 1980).
  3. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, Boston, 2003).
  4. L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Clarendon, Oxford, 2003).
  5. A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep.370, 63–235 (2002). [CrossRef]
  6. L. A. Ostrovskii, “Propagation of wave packets and space-time self-focusing in a nonlinear medium,” Sov. Phys. JETP24, 797–800 (1967).
  7. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomenaand their applications to all-optical signal processing, mode-locking, pulse, compression and solitions,” Opt. Quantum Electron.28, 1691–1740 (1996). [CrossRef]
  8. W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, and G. I. Stegeman, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett.74, 5036–5039 (1995). [CrossRef] [PubMed]
  9. R. Schiek, Y. Baek, and G. I. Stegeman, “One-dimensional spatial solitary waves due to cascaded second-order nonlinearities in planar waveguides,” Phys. Rev. E53, 1138–1141 (1996). [CrossRef]
  10. P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett.81, 570–573 (1998). [CrossRef]
  11. A. Degasperis, M. Conforti, F. Baronio, and S. Wabnitz, “Stable Control of Pulse Speed in Parametric Three-Wave Solitons,” Phys. Rev. Lett.97, 093901 (2006) [CrossRef] [PubMed]
  12. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover Publications Inc., New York, 1975).
  13. D. V. Skryabin, A. V. Yulin, and A. I. Maimistov, “Localized polaritons and second-harmonic generation in a resonant medium with quadratic nonlinearity,” Phys. Rev. Lett.96, 163904–163907 (2006). [CrossRef] [PubMed]
  14. We assume that a photon of a given circular polarization promotes an electron-hole pair (exciton) creation with a well-defined spin orientation such that only linearly polarized light can generate biexcitons, cf., L. Jacak, P. Hawrylak, and A. Wojs, Optical Properties of Semiconductor Quantum Dots (Springer, Berlin, 1997).
  15. The contributions of cubic and quadratic nonlinearities to the polarization can be roughly estimated as P(3)/P2eff(3)meff(2)~5×10-2, using χeff(3)≃10-18m2V2 for GaAs. Here the peak field amplitude ℰm of a picosecond 2π input pulse was estimated using the known pulse area as ℰm ∼ πh̄/degτp. Thus quadratic nonlinearities indeed dominate in our case.
  16. In the circular polarization basis, the Bloch equations are exact such that no rotating wave approximation is needed.
  17. T. Brunhes, P. Boucaud, and S. Sauvage, “Infrared second-order optical susceptibility in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B61, 5562–5570 (2000). [CrossRef]
  18. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett.68, 2609–2611 (1996). [CrossRef]
  19. T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett.27, 628–630 (2002). [CrossRef]
  20. G. Panzarini, U. Hohenester, and E. Molinari, “Self-induced transparency in semiconductor quantum dots,” Phys. Rev. B65, 165322–165327 (2002). [CrossRef]
  21. M. Jütte, H. Stolz, and W. von der Osten, “Linear and nonlinear pulse propagation at bound excitons in CdS,” J. Opt. Soc. Am. B13, 1205–1210 (1996). [CrossRef]
  22. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81, 1110–1113 (1998). [CrossRef]
  23. H. Giessen, A. Knorr, S. Haas, S. W. Koch, S. Linden, J. Kuhl, M. Hetterich, M. Grün, and C. Klingshirn, “Self-induced transmission on a free exciton resonance in a semiconductor,” Phys. Rev. Lett.81, 4260–4263 (1998). [CrossRef]
  24. P. Borri, W. Langbein, S. Schneider, and U. Woggon, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett.87, 157401–157404 (2001). [CrossRef] [PubMed]
  25. J. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, USA, 2006).
  26. A. V. Buryak, Y. S. Kivshar, and S. Trillo, “Optical solitons supported by competing nonlinearities,” Opt. Lett.20, 1961–1963 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited