OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14042–14053

Surface plasmon-coupled emission on plasmonic Bragg gratings

Mana Toma, Koji Toma, Pavel Adam, Jiří Homola, Wolfgang Knoll, and Jakub Dostálek  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 14042-14053 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2916 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface plasmon-coupled emission (SPCE) from emitters in a close proximity to a plasmonic Bragg grating is investigated. In this study, the directional fluorescence emission mediated by Bragg-scattered surface plasmons and surface plasmons diffraction cross-coupled through a thin metallic film is observed by using the reverse Kretschmann configuration. We show that controlling of dispersion relation of these surface plasmon modes by tuning the refractive index at upper and lower interfaces of a dense sub-wavelength metallic grating enables selective reducing or increasing the intensity of the light emitted to certain directions. These observations may provide important leads for design of advanced plasmonic structures in applications areas of plasmon-enhanced fluorescence spectroscopy and nanoscale optical sources.

© 2012 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons
(300.2530) Spectroscopy : Fluorescence, laser-induced
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

Original Manuscript: March 6, 2012
Revised Manuscript: April 6, 2012
Manuscript Accepted: May 15, 2012
Published: June 11, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Mana Toma, Koji Toma, Pavel Adam, Jiří Homola, Wolfgang Knoll, and Jakub Dostálek, "Surface plasmon-coupled emission on plasmonic Bragg gratings," Opt. Express 20, 14042-14053 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011). [CrossRef] [PubMed]
  2. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011). [CrossRef]
  3. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1393–1396 (2002). [CrossRef]
  4. S. Wedge, A. Giannattasio, and W. L. Barnes, “Surface plasmon-polariton mediated emission of light from top-emitting organic light-emitting diode type structures,” Org. Electron. 8(2-3), 136–147 (2007). [CrossRef]
  5. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic crystal for efficient energy transfer from fluorescent molecules to long-range surface plasmons,” Opt. Express 17(10), 8294–8301 (2009). [CrossRef] [PubMed]
  6. J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008). [CrossRef] [PubMed]
  7. J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008). [CrossRef] [PubMed]
  8. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998). [CrossRef]
  9. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984). [CrossRef]
  10. P. Andrew and W. L. Barnes, “Molecular fluorescence above metallic gratings,” Phys. Rev. B 64(12), 125405 (2001). [CrossRef]
  11. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003). [CrossRef] [PubMed]
  12. W. Knoll, M. R. Philpott, and J. D. Swalen, “Emission of Light from Ag Metal Gratings Coated with Dye Monolayer Assemblies,” J. Chem. Phys. 75(10), 4795–4799 (1981). [CrossRef]
  13. R. M. Amos and W. L. Barnes, “Modification of spontaneous emission lifetimes in the presence of corrugated metallic surfaces,” Phys. Rev. B 59(11), 7708–7714 (1999). [CrossRef]
  14. K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008). [CrossRef] [PubMed]
  15. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-Plasmon Energy Gaps and Photoluminescence,” Phys. Rev. B Condens. Matter 52(15), 11441–11445 (1995). [CrossRef] [PubMed]
  16. M. Kreiter, S. Mittler, W. Knoll, and J. R. Sambles, “Surface plasmon-related resonances on deep and asymmetric gold gratings,” Phys. Rev. B 65(12), 125415 (2002). [CrossRef]
  17. S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12(16), 3673–3685 (2004). [CrossRef] [PubMed]
  18. W. H. Weber and C. F. Eagen, “Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,” Opt. Lett. 4(8), 236–238 (1979). [CrossRef] [PubMed]
  19. E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Multi-wavelength immunoassays using surface plasmon-coupled emission,” Biochem. Biophys. Res. Commun. 313(3), 721–726 (2004). [CrossRef] [PubMed]
  20. K. Toma, J. Dostalek, and W. Knoll, “Long range surface plasmon-coupled fluorescence emission for biosensor applications,” Opt. Express 19(12), 11090–11099 (2011). [CrossRef] [PubMed]
  21. Y. Wang, J. Dostalek, and W. Knoll, “Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance,” Anal. Chem. 83(16), 6202–6207 (2011). [CrossRef] [PubMed]
  22. E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen,” Z. Phys. 241(4), 313–324 (1971). [CrossRef]
  23. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).
  24. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996). [CrossRef] [PubMed]
  25. F. Romanato, L. Hong, H. K. Kang, C. C. Wong, Y. Zong, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited