OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14064–14074

Helical mode conversion using conical reflector

H. Kobayashi, K. Nonaka, and M. Kitano  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14064-14074 (2012)
http://dx.doi.org/10.1364/OE.20.014064


View Full Text Article

Enhanced HTML    Acrobat PDF (1027 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In a recent paper, Mansuripur et al. indicated and numerically verified the generation of the helical wavefront of optical beams using a conical-shape reflector. Because the optical reflection is largely free from chromatic aberrations, the conical reflector has an advantage of being able to manipulate the helical wavefront with broadband light such as white light or short light pulses. In this study, we introduce geometrical understanding of the function of the conical reflector using the spatially-dependent geometric phase, or more specifically, the spin redirection phase. We also present a theoretical analysis based on three-dimensional matrix calculus and elucidate relationships of the spin, orbital, and total angular momenta between input and output beams. These analyses are very useful when designing other optical devices that utilize spatially-dependent spin redirection phases. Moreover, we experimentally demonstrate the generation of helical beams from an ordinary Gaussian beam using a metallic conical-shape reflector.

© 2012 OSA

OCIS Codes
(220.2740) Optical design and fabrication : Geometric optical design
(350.1370) Other areas of optics : Berry's phase
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Physical Optics

History
Original Manuscript: May 9, 2012
Revised Manuscript: May 25, 2012
Manuscript Accepted: May 30, 2012
Published: June 11, 2012

Citation
H. Kobayashi, K. Nonaka, and M. Kitano, "Helical mode conversion using conical reflector," Opt. Express 20, 14064-14074 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-14064


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London A392, 45–57 (1984). [CrossRef]
  2. A. Shapere and F. Wilczek, eds., Geometric Phases in Physics (World Scientific, Singapore, 1989).
  3. R. Y. Chiao and Y.-S. Wu, “Manifestations of Berry’s topological phase for the photon,” Phys. Rev. Lett.57, 933–936 (1986). [CrossRef] [PubMed]
  4. M. V. Berry, “Interpreting the anholonomy of coiled light,” Nature326, 277–278 (1987). [CrossRef]
  5. A. Tomita and R. Y. Chiao, “Observation of Berry’s topological phase by use of an optical fiber,” Phys. Rev. Lett.57, 937–940 (1986). [CrossRef] [PubMed]
  6. M. Kitano, T. Yabuzaki, and T. Ogawa, “Comment on Observation of Berry’s topological phase by use of an optical fiber,” Phys. Rev. Lett.58, 523–523 (1987). [CrossRef] [PubMed]
  7. T. F. Jordan, “Quantum phases from reflections,” Phys. Rev. Lett.60, 1584–1584 (1988). [CrossRef] [PubMed]
  8. R. Y. Chiao, A. Antaramian, K. M. Ganga, H. Jiao, S. R. Wilkinson, and H. Nathel, “Observation of a topological phase by means of a nonplanar Mach-Zehnder interferometer,” Phys. Rev. Lett.60, 1214–1217 (1988). [CrossRef] [PubMed]
  9. M. Segev, R. Solomon, and A. Yariv, “Manifestation of Berry’s phase in image-bearing optical beams,” Phys. Rev. Lett.69, 590–592 (1992). [CrossRef] [PubMed]
  10. E. J. Galvez and C. D. Holmes, “Geometric phase of optical rotators,” J. Opt. Soc. Am. A16, 1981–1985 (1999). [CrossRef]
  11. S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Ind. Acad. Sci. A44, 247–262 (1956).
  12. M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt.34, 1401–1407 (1987). [CrossRef]
  13. R. Bhandari, “Polarization of light and topological phases,” Phys. Rep.281, 1–64 (1997). [CrossRef]
  14. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant pancharatnam-berry phase optical elements with computer-generated subwavelengths graings,” Opt. Lett.27, 1141–1143 (2002). [CrossRef]
  15. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992). [CrossRef] [PubMed]
  16. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75, 826–829 (1995). [CrossRef] [PubMed]
  17. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412, 313–316 (2001). [CrossRef] [PubMed]
  18. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett.96, 163905 (2006). [CrossRef] [PubMed]
  19. M. Mansuripur, A. R. Zakharian, and E. M. Wright, “Spin and orbital angular momenta of light reflected from a cone,” Phys. Rev. A84, 033813 (2011). [CrossRef]
  20. M. Mansuripur, A. R. Zakharian, and E. M. Wright, “Spin-to-orbital angular momentum exchange via reflection from a cone,” Proc. SPIE8097, 809716 (2011). [CrossRef]
  21. C. Konz and G. Benford, “Geometric absorption of electromagnetic angular momentum,” Opt. Comm.226, 249–254 (2003). [CrossRef]
  22. T. A. Nieminen, “Comment on Geometric absorption of electromagnetic angular momentum,” Opt. Comm.235, 227–229 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited