OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14075–14089

Path-independent phase unwrapping using phase gradient and total-variation (TV) denoising

Howard Y. H. Huang, L. Tian, Z. Zhang, Y. Liu, Z. Chen, and G. Barbastathis  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14075-14089 (2012)
http://dx.doi.org/10.1364/OE.20.014075


View Full Text Article

Acrobat PDF (2265 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Phase unwrapping is a challenging task for interferometry based techniques in the presence of noise. The majority of existing phase unwrapping techniques are path-following methods, which explicitly or implicitly define an intelligent path and integrate phase difference along the path to mitigate the effect of erroneous pixels. In this paper, a path-independent unwrapping method is proposed where the unwrapped phase gradient is determined from the wrapped phase and subsequently denoised by a TV minimization based method. Unlike the wrapped phase map where phase jumps are present, the gradient of the unwrapped phase map is smooth and slowly-varying at noise-free areas. On the other hand, the noise is greatly amplified by the differentiation process, which makes it easier to separate from the smooth phase gradient. Thus an approximate unwrapped phase can be obtained by integrating the denoised phase gradient. The final unwrapped phase map is subsequently determined by adding the first few modes of the unwrapped phase. The proposed method is most suitable for unwrapping phase maps without abrupt phase changes. Its capability has been demonstrated both numerically and by experimental data from shearography and electronic speckle pattern interferometry (ESPI).

© 2012 OSA

OCIS Codes
(090.2880) Holography : Holographic interferometry
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(280.6730) Remote sensing and sensors : Synthetic aperture radar
(100.5088) Image processing : Phase unwrapping
(120.6165) Instrumentation, measurement, and metrology : Speckle interferometry, metrology

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 23, 2012
Revised Manuscript: May 23, 2012
Manuscript Accepted: June 1, 2012
Published: June 11, 2012

Citation
Howard Y. H. Huang, L. Tian, Z. Zhang, Y. Liu, Z. Chen, and G. Barbastathis, "Path-independent phase unwrapping using phase gradient and total-variation (TV) denoising," Opt. Express 20, 14075-14089 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-14075


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Y. H. Huang, Y. S. Liu, S. Y. Hung, C. G. Li, and F. Janabi-Sharifi, “Dynamic phase evaluation in sparse-sampled temporal speckle pattern sequence,” Opt. Lett.36(4), 526–528 (2011). [CrossRef] [PubMed]
  2. E. Volkl, L. F. Allard, and D. C. Joy, eds., Introduction to Electron holography (Plenum, 1999).
  3. B. Osmanoglu, T. H. Dixon, S. Wdowinski, and E. Cabral-Cano, “On the importance of path for phase unwrapping in synthetic aperture radar interferometry,” Appl. Opt.50(19), 3205–3220 (2011). [CrossRef] [PubMed]
  4. J. Langley and Q. Zhao, “Unwrapping magnetic resonance phase maps with Chebyshev polynomials,” Magn. Reson. Imaging27(9), 1293–1301 (2009). [CrossRef] [PubMed]
  5. C. J. Tay, C. Quan, T. Wu, and Y. H. Huang, “Integrated method for 3-D rigid-body displacement measurement using fringe projection,” Opt. Eng.43(5), 1152–1159 (2004). [CrossRef]
  6. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software, (John Wiley & Sons, 1998).
  7. R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci.23(4), 713–720 (1988). [CrossRef]
  8. Y. Xu and C. Ai, ““Simple and effective phase unwrapping technique,” Interferometry IV: Techniques and Analysis,” Proc. SPIE2003, 254–263 (1993). [CrossRef]
  9. C. Prati, M. Giani, and N. Leuratti, “SAR interferometry: a 2-D phase unwrapping technique based on phase and absolute values information,” in Proceedings of the 1990 International Geoscience and Remote Sensing Symposium (IEEE, 1990), pp. 2043–2046.
  10. T. J. Flynn, “Two-dimensional phase unwrapping with minimum weighted discontinuity,” J. Opt. Soc. Am. A14(10), 2692–2702 (1997). [CrossRef]
  11. I. Shalem and I. Yavneh, “A multilevel graph algorithm for two dimensional phase unwrapping,” Comput. Vis. Sci.11(2), 89–100 (2008). [CrossRef]
  12. T. M. Venema and J. D. Schmidt, “Optical phase unwrapping in the presence of branch points,” Opt. Express16(10), 6985–6998 (2008). [CrossRef] [PubMed]
  13. M. Gdeisat, M. Arevalillo-Herráez, D. Burton, and F. Lilley, “Three-dimensional phase unwrapping using the Hungarian algorithm,” Opt. Lett.34(19), 2994–2996 (2009). [CrossRef] [PubMed]
  14. S. S. Gorthi, G. Rajshekhar, and P. Rastogi, “Strain estimation in digital holographic interferometry using piecewise polynomial phase approximation based method,” Opt. Express18(2), 560–565 (2010). [CrossRef] [PubMed]
  15. J. Bioucas-Dias, V. Katkovnik, J. Astola, and K. Egiazarian, “Absolute phase estimation: adaptive local denoising and global unwrapping,” Appl. Opt.47(29), 5358–5369 (2008). [CrossRef] [PubMed]
  16. D. C. Ghiglia and L. A. Romero, “Direct phase estimation from phase differences using fast elliptic partial differential equation solvers,” Opt. Lett.14(20), 1107–1109 (1989). [CrossRef] [PubMed]
  17. M. A. Schofield and Y. M. Zhu, “Fast phase unwrapping algorithm for interferometric applications,” Opt. Lett.28(14), 1194–1196 (2003). [CrossRef] [PubMed]
  18. R. Yamaki and A. Hirose, “Singularity-spreading phase unwrapping,” IEEE Trans. Geosci. Rem. Sens.45(10), 3240–3251 (2007). [CrossRef]
  19. S. Tomioka, S. Heshmat, N. Miyamoto, and S. Nishiyama, “Phase unwrapping for noisy phase maps using rotational compensator with virtual singular points,” Appl. Opt.49(25), 4735–4745 (2010). [CrossRef] [PubMed]
  20. M. D. Pritt, “Congruence in least-squares phase unwrapping,” in Proceedings Vol. II: Remote Sensing - a Scientific Vision for Sustainable Development, IGARSS '97 - 1997 International Geoscience and Remote Sensing Symposium, 1997), pp.875–877.
  21. J. Strand and T. Taxt, “Performance evaluation of two-dimensional phase unwrapping algorithms,” Appl. Opt.38(20), 4333–4344 (1999). [CrossRef] [PubMed]
  22. E. Zappa and G. Busca, “Comparison of eight unwrapping algorithms applied to Fourier-transform profilometry,” Opt. Lasers Eng.46(2), 106–116 (2008). [CrossRef]
  23. J. Parkhurst, G. Price, P. Sharrock, and C. Moore, “Phase unwrapping algorithms for use in a true real-time optical body sensor system for use during radiotherapy,” Appl. Opt.50(35), 6430–6439 (2011). [CrossRef] [PubMed]
  24. J. F. Weng and Y. L. Lo, “Integration of robust filters and phase unwrapping algorithms for image reconstruction of objects containing height discontinuities,” Opt. Express20(10), 10896–10920 (2012). [CrossRef] [PubMed]
  25. M. A. Navarro, J. C. Estrada, M. Servin, J. A. Quiroga, and J. Vargas, “Fast two-dimensional simultaneous phase unwrapping and low-pass filtering,” Opt. Express20(3), 2556–2561 (2012). [CrossRef] [PubMed]
  26. Y. H. Huang, F. Janabi-Sharifi, Y. Liu, and Y. Y. Hung, “Dynamic phase measurement in shearography by clustering method and Fourier filtering,” Opt. Express19(2), 606–615 (2011). [CrossRef] [PubMed]
  27. Y. H. Huang, S. P. Ng, L. Liu, Y. S. Chen, and M. Y. Y. Hung, “Shearographic phase retrieval using one single specklegram: a clustering approach,” Opt. Eng.47(5), 054301 (2008). [CrossRef]
  28. Y. H. Huang, Y. S. Liu, S. Y. Hung, C. G. Li, and F. Janabi-Sharifi, “Dynamic phase evaluation in sparse-sampled temporal speckle pattern sequence,” Opt. Lett.36(4), 526–528 (2011). [CrossRef] [PubMed]
  29. A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vis.20(1/2), 89–97 (2004). [CrossRef]
  30. Y. H. Huang, S. Y. Hung, F. Janabi-Sharifi, W. Wang, and Y. S. Liu, “Quantitative phase retrieval in dynamic laser speckle interferometry,” Opt. Lasers Eng.50(4), 534–539 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited