OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14137–14151

Homogeneous light field model for interactive control of viewing parameters of integral imaging displays

Yin Xu, XiaoRui Wang, Yan Sun, and JianQi Zhang  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 14137-14151 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1305 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel model for three dimensional (3D) interactive control of viewing parameters of integral imaging systems is established in this paper. Specifically, transformation matrices are derived in an extended homogeneous light field coordinate space based on interactive controllable requirement of integral imaging displays. In this model, new elemental images can be synthesized directly from the ones captured in the record process to display 3D images with expected viewing parameters, and no extra geometrical information of the 3D scene is required in the synthesis process. Computer simulation and optical experimental results show that the reconstructed 3D scenes with depth control, lateral translation and rotation can be achieved.

© 2012 OSA

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(110.4190) Imaging systems : Multiple imaging
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.2040) Instrumentation, measurement, and metrology : Displays

ToC Category:
Imaging Systems

Original Manuscript: April 11, 2012
Revised Manuscript: May 24, 2012
Manuscript Accepted: May 29, 2012
Published: June 11, 2012

Yin Xu, XiaoRui Wang, Yan Sun, and JianQi Zhang, "Homogeneous light field model for interactive control of viewing parameters of integral imaging displays," Opt. Express 20, 14137-14151 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys.7, 821–825 (1908).
  2. O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt.40(20), 3318–3325 (2001). [CrossRef] [PubMed]
  3. S. Yeom and B. Javidi, “Three-dimensional distortion-tolerant object recognition using integral imaging,” Opt. Express12(23), 5795–5809 (2004). [CrossRef] [PubMed]
  4. I. Moon and B. Javidi, “Three-dimensional recognition of photon-starved events using computational integral imaging and statistical sampling,” Opt. Lett.34(6), 731–733 (2009). [CrossRef] [PubMed]
  5. J.-H. Park and K.-M. Jeong, “Frequency domain depth filtering of integral imaging,” Opt. Express19(19), 18729–18741 (2011). [CrossRef] [PubMed]
  6. I. Chung, J.-H. Jung, J. Hong, K. Hong, and B. Lee, “Depth extraction with sub-pixel resolution in integral imaging based on genetic algorithm,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JMA3.
  7. D.-C. Hwang, D.-H. Shin, S.-C. Kim, and E.-S. Kim, “Depth extraction of three-dimensional objects in space by the computational integral imaging reconstruction technique,” Appl. Opt.47(19), D128–D135 (2008). [CrossRef] [PubMed]
  8. J.-H. Jung, K. Hong, G. Park, I. Chung, J.-H. Park, and B. Lee, “Reconstruction of three-dimensional occluded object using optical flow and triangular mesh reconstruction in integral imaging,” Opt. Express18(25), 26373–26387 (2010). [CrossRef] [PubMed]
  9. D.-H. Shin, B.-G. Lee, and J.-J. Lee, “Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging,” Opt. Express16(21), 16294–16304 (2008). [CrossRef] [PubMed]
  10. B. Javidi, R. Ponce-Díaz, and S.-H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett.31(8), 1106–1108 (2006). [CrossRef] [PubMed]
  11. W. Matusik and H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graph.23, 814–824 (2004). [CrossRef]
  12. J. Arai, M. Okui, T. Yamashita, and F. Okano, “Integral three-dimensional television using a 2000-scanning-line video system,” Appl. Opt.45(8), 1704–1712 (2006). [CrossRef] [PubMed]
  13. Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A live 3D TV system using a camera array and an integral photography display with interactive control of viewing parameters,” IEEE Trans. Vis. Comput. Graph.15(5), 841–852 (2009). [CrossRef] [PubMed]
  14. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt.36(7), 1598–1603 (1997). [CrossRef] [PubMed]
  15. H. E. Ives, “Optical properties of a Lippmann lenticulated sheet,” J. Opt. Soc. Am. A21(3), 171–176 (1931). [CrossRef]
  16. J. Arai, M. Kawakita, and F. Okano, “Effects of sampling on depth control in integral imaging,” Proc. SPIE7237, 723710, 723710-12 (2009). [CrossRef]
  17. J. Arai, H. Kawai, M. Kawakita, and F. Okano, “Depth-control method for integral imaging,” Opt. Lett.33(3), 279–281 (2008). [CrossRef] [PubMed]
  18. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express13(23), 9175–9180 (2005). [CrossRef] [PubMed]
  19. H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express18(25), 25573–25583 (2010). [CrossRef] [PubMed]
  20. J.-S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett.27(13), 1144–1146 (2002). [CrossRef] [PubMed]
  21. J.-S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett.28(16), 1421–1423 (2003). [CrossRef] [PubMed]
  22. D.-H. Shin, M. Cho, and E.-S. Kim, “Computational implementation of asymmetric integral imaging by use of two crossed lenticular sheets,” ETRI J.27(3), 289–293 (2005). [CrossRef]
  23. H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Display Technol.6(10), 404–411 (2010). [CrossRef]
  24. H.-B. Xie, X. Zhao, Y. Yang, J. Bu, Z. L. Fang, and X. C. Yuan, “Cross-lenticular lens array for full parallax 3-D display with Crosstalk reduction,” Sci. China Technolog. Sci.55(3), 735–742 (2012). [CrossRef]
  25. R. Damasevicius and G. Ziberkas, “Energy consumption and quality of approximate image transformation,” Electron. Electr. Eng.120, 79–82 (2012).
  26. J. X. Chai, X. Tong, S. C. Chan, and H. Y. Shum, “Plenoptic sampling,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’00) (ACM Press, 2000), pp. 307–318.
  27. C. Zhang and T. Chen, “Spectral analysis for sampling image-based rendering data,” IEEE Trans. Circ. Syst. Video Tech.13(11), 1038–1050 (2003). [CrossRef]
  28. M. N. Do, D. Marchand-Maillet, and M. Vetterli, “On the bandwidth of the plenoptic function,” IEEE Trans. Image Process.21(2), 708–717 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2690 KB)     
» Media 2: MOV (2529 KB)     
» Media 3: MOV (2667 KB)     
» Media 4: MOV (3028 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited