OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14152–14167

Sub-wavelength temperature probing in near-field laser heating by particles

Xiaoduan Tang, Yanan Yue, Xiangwen Chen, and Xinwei Wang  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 14152-14167 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2888 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work reports on the first time experimental investigation of temperature field inside silicon substrates under particle-induced near-field focusing at a sub-wavelength resolution. The noncontact Raman thermometry technique employing both Raman shift and full width at half maximum (FWHM) methods is employed to investigate the temperature rise in silicon beneath silica particles. Silica particles of three diameters (400, 800 and 1210 nm), each under four laser energy fluxes of 2.5 × 108, 3.8 × 108, 6.9 × 108 and 8.6 × 108 W/m2, are used to investigate the effects of particle size and laser energy flux. The experimental results indicate that as the particle size or the laser energy flux increases, the temperature rise inside the substrate goes higher. Maximum temperature rises of 55.8 K (based on Raman FWHM method) and 29.3K (based on Raman shift method) are observed inside the silicon under particles of 1210 nm diameter with an incident laser of 8.6 × 108 W/m2. The difference is largely due to the stress inside the silicon caused by the laser heating. To explore the mechanism of heating at the sub-wavelength scale, high-fidelity simulations are conducted on the enhanced electric and temperature fields. Modeling results agree with experiment qualitatively, and discussions are provided about the reasons for their discrepancy.

© 2012 OSA

OCIS Codes
(300.6450) Spectroscopy : Spectroscopy, Raman
(350.4990) Other areas of optics : Particles
(280.6780) Remote sensing and sensors : Temperature

ToC Category:

Original Manuscript: April 16, 2012
Revised Manuscript: May 30, 2012
Manuscript Accepted: May 30, 2012
Published: June 11, 2012

Xiaoduan Tang, Yanan Yue, Xiangwen Chen, and Xinwei Wang, "Sub-wavelength temperature probing in near-field laser heating by particles," Opt. Express 20, 14152-14167 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Bar, S. Rubin, R. W. Cutts, T. N. Taylor, and T. A. Zawodzinski., “Dendrimer-modified silicon oxide surfaces as platforms for the deposition of gold and silver colloid monolayers: preparation method, characterization, and correlation between microstructure and optical properties,” Langmuir12(5), 1172–1179 (1996). [CrossRef]
  2. Y. Endo, M. Ono, T. Yamada, H. Kawamura, K. Kobara, and T. Kawamura, “A study of antireflective and antistatic coating with ultrafine particles,” Adv. Powder Technol.7(2), 131–140 (1996). [CrossRef]
  3. J. V. Sanders, “Colour of precious opal,” Nature204(4964), 1151–1153 (1964). [CrossRef]
  4. V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics55(6), 7619–7625 (1997). [CrossRef]
  5. J. S. Park, S. O. Meade, E. Segal, and M. J. Sailor, “Porous silicon-based polymer replicas formed by bead patterning,” Physica Status Solidi A204(5), 1383–1387 (2007). [CrossRef]
  6. V. M. Shelekhina, O. A. Prokhorov, P. A. Vityaz, A. P. Stupak, S. V. Gaponenko, and N. V. Gaponenko, “Towards 3D photonic crystals,” Synth. Met.124(1), 137–139 (2001). [CrossRef]
  7. F. Xia and L. Jiang, “Bio−inspired, smart, multiscale interfacial materials,” Adv. Mater. (Deerfield Beach Fla.)20(15), 2842–2858 (2008). [CrossRef]
  8. M. X. Yang, D. H. Gracias, P. W. Jacobs, and G. A. Somorjai, “Lithographic fabrication of model systems in heterogeneous catalysis and surface science studies,” Langmuir14(6), 1458–1464 (1998). [CrossRef]
  9. M. Aminuzzaman, A. Watanabe, and T. Miyashita, “Direct writing of conductive silver micropatterns on flexible polyimide film by laser-induced pyrolysis of silver nanoparticle-dispersed film,” J. Nanopart. Res.12(3), 931–938 (2010). [CrossRef]
  10. H. W. Deckman, J. H. Dunsmuir, S. Garoff, J. A. Mchenry, and D. G. Peiffer, “Macromolecular self-organized assemblies,” J. Vac. Sci. Technol. B6(1), 333–336 (1988). [CrossRef]
  11. S. Hayashi, Y. Kumamoto, T. Suzuki, and T. Hirai, “Imaging by polystyrene latex-particles,” J. Colloid Interface Sci.144(2), 538–547 (1991). [CrossRef]
  12. D. R. Halfpenny and D. M. Kane, “A quantitative analysis of single pulse ultraviolet dry laser cleaning,” J. Appl. Phys.86(12), 6641–6646 (1999). [CrossRef]
  13. L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, J. Shi, and J. C. Li, “Fabrication of hemispherical cavity arrays on silicon substrates using laser-assisted nanoimprinting of self-assembled particles,” Nanotechnology15(3), 333–336 (2004). [CrossRef]
  14. L. P. Li, Y. F. Lu, D. W. Doerr, and D. R. Alexander, “Laser-assisted nanopatterning of aluminium using particle-induced near-field optical enhancement and nanoimprinting,” Nanotechnology15(11), 1655–1660 (2004). [CrossRef]
  15. L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, and X. Y. Chen, “Parametric investigation of laser nanoimprinting of hemispherical cavity arrays,” J. Appl. Phys.96(9), 5144–5151 (2004). [CrossRef]
  16. E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol.3(7), 413–417 (2008). [CrossRef] [PubMed]
  17. K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett.80(25), 4693–4695 (2002). [CrossRef]
  18. S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B15(6), 2897–2904 (1997). [CrossRef]
  19. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science272(5258), 85–87 (1996). [CrossRef]
  20. S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys.92(5), 2495–2500 (2002). [CrossRef]
  21. H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc.202(1), 129–135 (2001). [CrossRef] [PubMed]
  22. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, Cambridge, 1999).
  23. G. Mie, “Contributions to the optics of turbid media, particularly of colloidal metal solutions,” Ann. Phys. 25, 377–445 (1908).
  24. B. S. Luk'yanchuk, Y. W. Zheng, and Y. F. Lu, “Laser cleaning of solid surface: Optical resonance and near-field effects,” High-Power Laser Ablation III.4065, 576–587 (2000).
  25. M. Balkanski, R. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B28(4), 1928–1934 (1983). [CrossRef]
  26. J. Menéndez and M. Cardona, “Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α-Sn: Anharmonic effects,” Phys. Rev. B29(4), 2051–2059 (1984). [CrossRef]
  27. M. Konstantinović, S. Bersier, X. Wang, M. Hayne, P. Lievens, R. Silverans, and V. Moshchalkov, “Raman scattering in cluster-deposited nanogranular silicon films,” Phys. Rev. B66(16), 161311 (2002). [CrossRef]
  28. Z. Su, J. Sha, G. Pan, J. Liu, D. Yang, C. Dickinson, and W. Zhou, “Temperature-dependent Raman scattering of silicon nanowires,” J. Phys. Chem. B110(3), 1229–1234 (2006). [CrossRef] [PubMed]
  29. T. Hart, R. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B1(2), 638–642 (1970). [CrossRef]
  30. Y. N. Yue, X. W. Chen, and X. W. Wang, “Noncontact sub-10 nm temperature measurement in near-field laser heating,” ACS Nano5(6), 4466–4475 (2011). [CrossRef] [PubMed]
  31. Y. N. Yue, J. C. Zhang, and X. W. Wang, “Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC,” Small7(23), 3324–3333 (2011). [CrossRef] [PubMed]
  32. R. K. Iler, “Adhesion of submicron silica particles on glass,” J. Colloid Interface Sci.38(2), 496–501 (1972). [CrossRef]
  33. U. C. Fischer and H. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol.19(4), 881–885 (1981). [CrossRef]
  34. H. W. Deckman, “Natural lithography,” Appl. Phys. Lett.41(4), 377–379 (1982). [CrossRef]
  35. A. S. Dimitrov, T. Miwa, and K. Nagayama, “A comparison between the optical properties of amorphous and crystalline monolayers of silica particles,” Langmuir15(16), 5257–5264 (1999). [CrossRef]
  36. N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of 2-dimensional crystals from latex-particles on substrates,” Langmuir8(12), 3183–3190 (1992). [CrossRef]
  37. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B103(19), 3854–3863 (1999). [CrossRef]
  38. R. Micheletto, H. Fukuda, and M. Ohtsu, “A simple method for the production of a 2-dimensional, ordered array of small latex-particles,” Langmuir11(9), 3333–3336 (1995). [CrossRef]
  39. J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A13(3), 1553–1558 (1995). [CrossRef]
  40. V. Ng, Y. Lee, B. Chen, and A. Adeyeye, “Nanostructure array fabrication with temperature-controlled self-assembly techniques,” Nanotechnology13(5), 554–558 (2002). [CrossRef]
  41. Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells93(1), 85–91 (2009). [CrossRef]
  42. B. G. Prevo and O. D. Velev, “Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions,” Langmuir20(6), 2099–2107 (2004). [CrossRef] [PubMed]
  43. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  44. J. Huang, A. R. Tao, S. Connor, R. He, and P. Yang, “A general method for assembling single colloidal particle lines,” Nano Lett.6(3), 524–529 (2006). [CrossRef] [PubMed]
  45. C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett.93(13), 133109 (2008). [CrossRef]
  46. S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett.10(8), 2989–2994 (2010). [CrossRef] [PubMed]
  47. A. S. Dimitrov and K. Nagayama, “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Langmuir12(5), 1303–1311 (1996). [CrossRef]
  48. G. Doerk, C. Carraro, and R. Maboudian, “Temperature dependence of Raman spectra for individual silicon nanowires,” Phys. Rev. B80(7), 073306 (2009). [CrossRef]
  49. S. Khachadorian, H. Scheel, A. Colli, A. Vierck, and C. Thomsen, “Temperature dependence of first- and second-order Raman scattering in silicon nanowires,” Physica Status Solidi B247(11-12), 3084–3088 (2010). [CrossRef]
  50. R. Tsu and J. G. Hernandez, “Temperature dependence of silicon Raman lines,” Appl. Phys. Lett.41(11), 1016–1018 (1982). [CrossRef]
  51. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997). [CrossRef]
  52. T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited article: simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy,” Rev. Sci. Instrum.78(6), 061301 (2007). [CrossRef] [PubMed]
  53. P. G. Klemens, “Anharmonic decay of optical phonons,” Phys. Rev.148(2), 845–848 (1966). [CrossRef]
  54. H. Tang and I. P. Herman, “Raman microprobe scattering of solid silicon and germanium at the melting temperature,” Phys. Rev. B Condens. Matter43(3), 2299–2304 (1991). [CrossRef] [PubMed]
  55. Y. Chen, B. Peng, and B. Wang, “Raman spectra and temperature-dependent raman scattering of silicon nanowires,” J. Phys. Chem. C111(16), 5855–5858 (2007). [CrossRef]
  56. M. R. Abel, S. Graham, J. R. Serrano, S. P. Kearney, and L. M. Phinney, “Raman thermometry of polysilicon microelectromechanical systems in the presence of an evolving stress,” J. Heat Trans.129(3), 329–334 (2007). [CrossRef]
  57. M. Bauer, A. M. Gigler, C. Richter, and R. W. Stark, “Visualizing stress in silicon micro cantilevers using scanning confocal Raman spectroscopy,” Microelectron. Eng.85(5-6), 1443–1446 (2008). [CrossRef]
  58. J. Weaver and H. Frederikse, CRC Handbook of Chemistry and Physics (CRC Press, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited