OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14213–14220

Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution

A. Chong, H. Liu, B. Nie, B. G. Bale, S. Wabnitz, W. H. Renninger, M. Dantus, and F. W. Wise  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14213-14220 (2012)
http://dx.doi.org/10.1364/OE.20.014213


View Full Text Article

Enhanced HTML    Acrobat PDF (1208 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With existing techniques for mode-locking, the bandwidth of ultrashort pulses from a laser is determined primarily by the spectrum of the gain medium. Lasers with self-similar evolution of the pulse in the gain medium can tolerate strong spectral breathing, which is stabilized by nonlinear attraction to the parabolic self-similar pulse. Here we show that this property can be exploited in a fiber laser to eliminate the gain-bandwidth limitation to the pulse duration. Broad (∼200 nm) spectra are generated through passive nonlinear propagation in a normal-dispersion laser, and these can be dechirped to ∼20-fs duration.

© 2012 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(320.5540) Ultrafast optics : Pulse shaping
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 23, 2012
Revised Manuscript: May 25, 2012
Manuscript Accepted: May 29, 2012
Published: June 11, 2012

Citation
A. Chong, H. Liu, B. Nie, B. G. Bale, S. Wabnitz, W. H. Renninger, M. Dantus, and F. W. Wise, "Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution," Opt. Express 20, 14213-14220 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-14213


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F. Krtner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express16, 9739–9745 (2008). [CrossRef] [PubMed]
  2. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B8, 2068–2076 (1991). [CrossRef]
  3. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroad-band femtosecond lasers,” IEEE J. Quantum Electron.30, 1100–1114 (1994). [CrossRef]
  4. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4, 33–36 (2010). [CrossRef]
  5. P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun.281, 1841–1849 (2008). [CrossRef]
  6. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997). [CrossRef]
  7. E. Ding, S. Lefrancois, J. N. Kutz, and F. W. Wise, “Scaling fiber lasers to large mode area: an investigation of passive mode-locking using a multi-mode fiber,” IEEE J. Quantum Electron.47, 597–606 (2011). [CrossRef] [PubMed]
  8. J. R. Buckley, S. W. Clark, and F. W. Wise, “Generation of ten-cycle pulses from an ytterbium fiber laser with cubic phase compensation,” Opt. Lett.31, 1340–1342 (2006). [CrossRef] [PubMed]
  9. X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, “Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator,” Opt. Express16, 7055–7059 (2008). [CrossRef] [PubMed]
  10. P. Adel and C. Fallnich, “High-power ultra-broadband modelocked Yb3+-fiber laser with 118 nm bandwidth,” Opt. Express10, 622–627 (2002). [PubMed]
  11. L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser,” Opt. Commun.281, 157–161 (2008). [CrossRef]
  12. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear-optical fibers,” J. Opt. Soc. Am. B10, 1185–1190 (1993). [CrossRef]
  13. M. Fermann, V. Kruglov, B. Thomsen, J. Dudley, and J. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett.84, 6010–6013 (2000). [CrossRef] [PubMed]
  14. B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics4, 307–311 (2010). [CrossRef]
  15. W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A82, 021805 (2010). [CrossRef]
  16. C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic raman fiber oscillator,” Opt. Express18, 8680–8687 (2010). [CrossRef] [PubMed]
  17. B. G. Bale and S. Wabnitz, “Strong spectral filtering for a mode-locked similariton fiber laser,” Opt. Lett.35, 2466–2468 (2010). [CrossRef] [PubMed]
  18. A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun.206, 171–177 (2002). [CrossRef]
  19. Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C.-H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B25, A140–A150 (2008). [CrossRef]
  20. I. Saytashev, B. Nie, A. Chong, H. Liu, S. Arkhipov, F. W. Wise, and M. Dantus, “Multiphoton imaging with sub-30 fs Yb fiber laser,” Proc. SPIE8226, 82261I (2012). [CrossRef]
  21. M. Y. Sander, J. Birge, A. Benedick, H. M. Crespo, and F. X. Kärtner, “Dynamics of dispersion managed octave-spanning titanium:sapphire lasers,” J. Opt. Soc. Am. B26, 743–749 (2009). [CrossRef]
  22. T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion,” Opt. Lett.29, 498–500 (2004). [CrossRef] [PubMed]
  23. A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett.85, 319–322 (2007). [CrossRef]
  24. C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, “Parabolic pulse generation with active or passive dispersion decreasing optical fibers,” Opt. Express15, 15824–15835 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited