OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14234–14243

Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser

Kenji Numata, Jeffrey R. Chen, and Stewart T. Wu  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 14234-14243 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1277 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a precision and fast wavelength tuning technique demonstrated for a digital-supermode distributed Bragg reflector laser. The laser was dynamically offset-locked to a frequency-stabilized master laser using an optical phase-locked loop, enabling precision fast tuning to and from any frequencies within a ~40-GHz tuning range. The offset frequency noise was suppressed to the statically offset-locked level in less than ~40 μs upon each frequency switch, allowing the laser to retain the absolute frequency stability of the master laser. This technique satisfies stringent requirements for gas sensing lidars and enables other applications that require such well-controlled precision fast tuning.

© 2012 OSA

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(140.3600) Lasers and laser optics : Lasers, tunable
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 23, 2012
Revised Manuscript: May 31, 2012
Manuscript Accepted: June 1, 2012
Published: June 12, 2012

Kenji Numata, Jeffrey R. Chen, and Stewart T. Wu, "Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser," Opt. Express 20, 14234-14243 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005). [CrossRef]
  2. Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002). [CrossRef]
  3. M. Mestre, J. M. Fabrega, J. A. Lazaro, V. Polo, A. Djupsjobacka, M. Forzati, P. Rigole, and J. Prat, “Tuning characteristics and switching speed of a modulated grating Y structure laser for wavelength routed PONs,” in Access Networks and In-house Communications, OSA Technical Digest (CD) (Optical Society of America, 2010), paper AThC2.
  4. M. Oberg, S. Nilsson, K. Streubel, J. Wallin, L. Backbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP/InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett.5(7), 735–737 (1993). [CrossRef]
  5. J. Buus and E. J. Murphy, “Tunable lasers in optical networks,” J. Lightwave Technol.24(1), 5–11 (2006). [CrossRef]
  6. R. Phelan, M. Lynch, J. F. Donegan, and V. Weldon, “Simultaneous multispecies gas sensing by use of a sampled grating distributed Bragg reflector and modulated grating Y laser diode,” Appl. Opt.44(27), 5824–5831 (2005). [CrossRef] [PubMed]
  7. B. Puttnam, M. Dueser, B. Thomsen, P. Bayvel, A. Bianciotto, R. Gaudino, G. Busico, L. Ponnampalam, D. Robbins, and N. Whitbread, “Burst mode operation of a DS-DBR widely tunable laser for wavelength agile system applications,” in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2006), Paper OW186.
  8. J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett.18(4), 565–567 (2006). [CrossRef]
  9. Space studies board, National research council, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (National Academies Press, 2007), Chap. 4.
  10. J. B. Abshire, H. Riris, G. Allan, X. Sun, S. R. Kawa, J. Mao, M. Stephen, E. Wilson, and M. A. Krainak, “Laser sounder for global measurement of CO2 concentrations in the troposphere from space,” in Laser Applications to Chemical, Security and Environmental Analysis of OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper LMA4.
  11. J. Mao and S. R. Kawa, “Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight,” Appl. Opt.43(4), 914–927 (2004). [CrossRef] [PubMed]
  12. S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus, Ser. B, Chem. Phys. Meteorol.62(5), 759–769 (2010). [CrossRef]
  13. J. R. Chen, K. Numata, and S. T. Wu, “Error reduction methods for integrated path differential absorption lidar measurements,” submitted to Opt. Express (2012).
  14. K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, and M. A. Krainak, “Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide,” Appl. Opt.50(7), 1047–1056 (2011). [CrossRef] [PubMed]
  15. L. Ponnampalam, D. J. Robbins, A. J. Ward, N. D. Whitbread, J. P. Duck, G. Busico, and D. J. Bazley, “Equivalent performance in C- and L-bands of digital supermode distributed Bragg reflector lasers,” IEEE J. Quantum Electron.43(9), 798–803 (2007). [CrossRef]
  16. C. J. Erickson, M. Van Zijll, G. Doermann, and D. S. Durfee, “An ultrahigh stability, low-noise laser current driver with digital control,” Rev. Sci. Instrum.79(7), 073107 (2008). [CrossRef] [PubMed]
  17. P. Correc, O. Girard, and I. F. de Faria., “On the thermal contribution to the FM response of DFB lasers: theory and experiment,” IEEE J. Quantum Electron.30(11), 2485–2490 (1994). [CrossRef]
  18. Analog Devices, AD9858 datasheet, http://www.analog.com/static/imported-files/data_sheets/AD9858.pdf .
  19. J. Ye and J. L. Hall, “Optical phase locking in the microradian domain: potential applications to NASA spaceborne optical measurements,” Opt. Lett.24(24), 1838–1840 (1999). [CrossRef] [PubMed]
  20. J. I. Thorpe, K. Numata, and J. Livas, “Laser frequency stabilization and control through offset sideband locking to optical cavities,” Opt. Express16(20), 15980–15990 (2008). [CrossRef] [PubMed]
  21. L. Consolino, G. Giusfredi, P. De Natale, M. Inguscio, and P. Cancio, “Optical frequency comb assisted laser system for multiplex precision spectroscopy,” Opt. Express19(4), 3155–3162 (2011). [CrossRef] [PubMed]
  22. A. S. Olesen, A. T. Pedersen, and K. Rottwitt, “Frequency stepped pulse train modulated wind sensing lidar,” Proc. SPIE8159, 81590O, 81590O-8 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited