OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14284–14291

Talbot effect beyond the paraxial limit at optical frequencies

Yi Hua, Jae Yong Suh, Wei Zhou, Mark D. Huntington, and Teri W. Odom  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 14284-14291 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1922 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper reports the experimental and theoretical investigation of the Talbot effect beyond the paraxial limit at optical frequencies. Au hole array films with periodicity a 0 comparable to the wavelength of coherent illumination λ were used to study the non-paraxial Talbot effect. Significant differences from the paraxial (classical) Talbot effect were observed. Depending on the ratio of a 0 / λ , the interference pattern in the direction perpendicular to the hole array was not necessarily periodic, and the self-image distances deviated from the paraxial Talbot distances. Defects within the hole array film or above the film were healed in the self-images as the light propagated from the surface.

© 2012 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(110.6760) Imaging systems : Talbot and self-imaging effects
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: April 18, 2012
Revised Manuscript: June 2, 2012
Manuscript Accepted: June 2, 2012
Published: June 12, 2012

Yi Hua, Jae Yong Suh, Wei Zhou, Mark D. Huntington, and Teri W. Odom, "Talbot effect beyond the paraxial limit at optical frequencies," Opt. Express 20, 14284-14291 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Masud, Classical Optics and its Applications (Cambridge University Press, 2002), Chap. 18.
  2. M. S. Chapman, C. R. Ekstrom, T. D. Hammond, J. Schmiedmayer, B. E. Tannian, S. Wehinger, and D. E. Pritchard, “Near-field imaging of atom diffraction gratings—the atomic Talbot effect,” Phys. Rev. A51(1), R14–R17 (1995). [CrossRef] [PubMed]
  3. M. R. Dennis, N. I. Zheludev, and F. J. García de Abajo, “The plasmon Talbot effect,” Opt. Express15(15), 9692–9700 (2007). [CrossRef] [PubMed]
  4. L. Rayleigh, “On copying diffraction gratings, and on some phenomena connected therewith,” Philos. Mag.11, 196–205 (1881).
  5. M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt.43(10), 2139–2164 (1996). [CrossRef]
  6. A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: self-imaging of complex structures,” J. Vac. Sci. Technol. B27(6), 2931–2937 (2009). [CrossRef]
  7. Y. Nakano and K. Murata, “Talbot interferometry for measuring the focal length of a lens,” Appl. Opt.24(19), 3162–3166 (1985). [CrossRef] [PubMed]
  8. Y. Y. Sun, X. C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett.90(3), 031107 (2007). [CrossRef]
  9. A. W. Lohmann and J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl. Opt.29(29), 4337–4340 (1990). [CrossRef] [PubMed]
  10. H. Dammann, G. Groh, and M. Kock, “Restoration of faulty images of periodic objects by means of self-imaging,” Appl. Opt.10(6), 1454–1455 (1971). [CrossRef] [PubMed]
  11. W. B. Case, M. Tomandl, S. Deachapunya, and M. Arndt, “Realization of optical carpets in the Talbot and Talbot-Lau configurations,” Opt. Express17(23), 20966–20974 (2009). [CrossRef] [PubMed]
  12. W. D. Montgomery, “Self-imaging objects of infinite aperture,” J. Opt. Soc. Am.57(6), 772–775 (1967). [CrossRef]
  13. E. Noponen and J. Turunen, “Electromagnetic theory of Talbot imaging,” Opt. Commun.98(1-3), 132–140 (1993). [CrossRef]
  14. J. D. Ring, J. Lindberg, C. J. Howls, and M. R. Dennis, “Aberration-like cusped focusing in the post-paraxial Talbot effect,” Opt. Lett.submitted.
  15. M. H. Chowdhury, J. M. Catchmark, and J. R. Lakowicz, “Imaging three-dimensional light propagation through periodic nanohole arrays using scanning aperture microscopy,” Appl. Phys. Lett.91(10), 103118 (2007). [CrossRef] [PubMed]
  16. W. W. Zhang, C. L. Zhao, J. Y. Wang, and J. S. Zhang, “An experimental study of the plasmonic Talbot effect,” Opt. Express17(22), 19757–19762 (2009). [CrossRef] [PubMed]
  17. T. Saastamoinen, J. Tervo, P. Vahimaa, and J. Turunen, “Exact self-imaging of transversely periodic fields,” J. Opt. Soc. Am. A21(8), 1424–1429 (2004). [CrossRef] [PubMed]
  18. P. B. Johnson and R. W. Christy, “Optical-constants of Noble-metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  19. J. Henzie, J. E. Barton, C. L. Stender, and T. W. Odom, “Large-area nanoscale patterning: chemistry meets fabrication,” Acc. Chem. Res.39(4), 249–257 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited