OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14321–14337

Adaptive control of input field to achieve desired output intensity profile in multimode fiber with random mode coupling

Reza Nasiri Mahalati, Daulet Askarov, Jeffrey P. Wilde, and Joseph M. Kahn  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 14321-14337 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1136 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a method for synthesis of a desired intensity profile at the output of a multimode fiber (MMF) with random mode coupling by controlling the input field distribution using a spatial light modulator (SLM) whose complex reflectance is piecewise constant over a set of disjoint blocks. Depending on the application, the desired intensity profile may be known or unknown a priori. We pose the problem as optimization of an objective function quantifying, and derive a theoretical lower bound on the achievable objective function. We present an adaptive sequential coordinate ascent (SCA) algorithm for controlling the SLM, which does not require characterizing the full transfer characteristic of the MMF, and which converges to near the lower bound after one pass over the SLM blocks. This algorithm is faster than optimizations based on genetic algorithms or random assignment of SLM phases. We present simulated and experimental results applying the algorithm to forming spots of light at a MMF output, and describe how the algorithm can be applied to imaging.

© 2012 OSA

OCIS Codes
(110.2350) Imaging systems : Fiber optics imaging
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Adaptive Optics

Original Manuscript: March 14, 2012
Revised Manuscript: April 29, 2012
Manuscript Accepted: May 31, 2012
Published: June 12, 2012

Reza Nasiri Mahalati, Daulet Askarov, Jeffrey P. Wilde, and Joseph M. Kahn, "Adaptive control of input field to achieve desired output intensity profile in multimode fiber with random mode coupling," Opt. Express 20, 14321-14337 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens,” Opt. Express15(15), 9113–9122 (2007). [CrossRef] [PubMed]
  2. P. M. Lane, A. L. P. Dlugan, R. Richards-Kortum, and C. E. Macaulay, “Fiber-optic confocal microscopy using a spatial light modulator,” Opt. Lett.25(24), 1780–1782 (2000). [CrossRef] [PubMed]
  3. K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguichi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, “In-fiber common-path optical coherence tomography using a conical-tip fiber,” Opt. Express17(4), 2375–2384 (2009). [CrossRef] [PubMed]
  4. N. Sim, D. Bessarab, C. M. Jones, and L. Krivitsky, “Method of targeted delivery of laser beam to isolated retinal rods by fiber optics,” Biomed. Opt. Express2(11), 2926–2933 (2011). [CrossRef] [PubMed]
  5. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics2, 1–32 (2008).
  6. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010). [CrossRef]
  7. G. Shambat, J. Provine, K. Riviore, T. Sarmiento, J. Harris, and J. Vučković, “Optical fiber tips functionalized with semiconductor photonic crystal cavities,” Appl. Phys. Lett.99(19), 191102 (2011). [CrossRef]
  8. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010). [CrossRef] [PubMed]
  9. T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express19(20), 18871–18884 (2011). [CrossRef] [PubMed]
  10. M. Mazilu, J. Baumgartl, S. Kosmeier, and K. Dholakia, “Optical eigenmodes; exploiting the quadratic nature of the energy flux and of scattering interactions,” Opt. Express19(2), 933–945 (2011). [CrossRef] [PubMed]
  11. R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express19(1), 247–254 (2011). [CrossRef] [PubMed]
  12. I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008). [CrossRef]
  13. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007). [CrossRef] [PubMed]
  14. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008). [CrossRef] [PubMed]
  15. O. Katz, E. Small, Y. Bomberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011). [CrossRef]
  16. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 2002).
  17. S. P. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, New York, 2004).
  18. B. D. Mangum, C. Mu, and J. M. Gerton, “Resolving single fluorophores within dense ensembles: contrast limits of tip-enhanced fluorescence microscopy,” Opt. Express16(9), 6183–6193 (2008). [CrossRef] [PubMed]
  19. R. A. Panicker and J. M. Kahn, “Algorithms for compensation of multimode fiber dispersion using adaptive optics,” J. Lightwave Technol.27(24), 5790–5799 (2009). [CrossRef]
  20. A. d'Aspremont and S. P. Boyd, “Relaxations and randomized methods for nonconvex QCQPs,” http://www.stanford.edu/class/ee364b/lectures/relaxations.pdf .
  21. B. K. Garside, T. K. Lim, and J. P. Marton, “Propagation characteristics of parabolic-index fiber modes: linearly polarized approximation,” J. Opt. Soc. Am.70(4), 395–400 (1980). [CrossRef]
  22. K. J. Boucher, C. Jan, J. M. Kahn, J. P. Wilde, and O. Solgaard, “Spot formation and scanning microscopy via multimode fibers,” in 2011 IEEE Photonics Conference (PHO) (IEEE, 2011), pp. 713–714.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited