OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14350–14361

Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes

L. Vincetti and V. Setti  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 14350-14361 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1552 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Confinement loss of inhibited coupling fibers with a cladding composed of a lattice of tubes of various shapes is theoretically and numerically investigated. Both solid core and hollow core are taken into account. It is shown that in case of polygonal shaped tubes, confinement loss is affected by extra loss due to Fano resonances between core modes and cladding modes with high spatial dependence. This explains why hollow core Kagome fibers exhibit much higher confinement loss with respect to tube lattice fibers and why hypocycloid core cladding interfaces significantly reduce fiber loss. Moreover it is shown that tube deformations, due for example to fabrication process, affect fiber performances. A relationship between the number of polygon sides and the spectral position of the extra loss is found. This suggests general guide lines for the design and fabrication of fibers free of Fano resonance in the spectral range of interest.

© 2012 OSA

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 29, 2012
Revised Manuscript: May 17, 2012
Manuscript Accepted: May 30, 2012
Published: June 12, 2012

L. Vincetti and V. Setti, "Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes," Opt. Express 20, 14350-14361 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318, 1118–1121 (2007). [CrossRef] [PubMed]
  2. A. Argyros and J. Pla, “Hollow-core polymer fibers with a kagome lattice: potential for transmission in the infrared,” Opt. Express15, 7713–7719 (2007). [CrossRef] [PubMed]
  3. T. Grujic, B. T. Kuhlmey, A. Argyros, S. Coen, and C. M. de Sterke, “Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling,” Opt. Express18, 25556–25566 (2010). [CrossRef] [PubMed]
  4. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negatice curvature of the core boundary in the spectral region >3.5μm,” Opt. Express19, 1441–1448 (2011). [CrossRef] [PubMed]
  5. A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negativecurvature hollow core,” Opt. Express19, 25723–25728 (2011). [CrossRef]
  6. J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett.92, 064105 (2009). [CrossRef]
  7. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B28, A11–A26 (2011). [CrossRef]
  8. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express19, 18470–18478 (2011). [CrossRef] [PubMed]
  9. S. Février, F. Gérôme, A. Labruyère, B. Beaudou, G. Humbert, and J. L. Auguste, “Ultraviolet guiding hollow-core photonic crystal fiber,” Opt. Lett.34, 2888–2890 (2009). [CrossRef] [PubMed]
  10. L. Vincetti and V. Setti, “Confinement loss in kagome and tube lattice fibers: comparison and analysis,” J. Light-wave Technol.30, 1470–1474 (2012). [CrossRef]
  11. L. Vincetti, V. Setti, and M. Zoboli, “Confinement loss of tube lattice and kagome fibers,” in Specialty Optical Fibers (SOF)Toronto, Canada (2011).
  12. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core kagome hollow-core photonics crystal fiber,” Opt. Lett.36, 669–671 (2011). [CrossRef] [PubMed]
  13. S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express18, 5142–5150 (2010). [CrossRef] [PubMed]
  14. J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George, and D. M. Bird, “An improved photonic bandgap fiber based on an array of rings,” Opt. Express14, 6291–6296 (2006). [CrossRef] [PubMed]
  15. X. Jiang, T. G. Euser, A. Abdolvand, F. Babic, F. Tani, N. Y. Joly, J. C. Travers, and P. St. J. Russell, “Single-mode hollow-core photonic crystal fiber made from soft glass,” Opt. Express19, 15438–15444 (2011). [CrossRef] [PubMed]
  16. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express18, 23133–23146 (2010). [CrossRef] [PubMed]
  17. L. Vincetti and V. Setti, “Fano resonances in polygonal tube fibers,” J. Lightwave Technol.30, 31–37 (2012). [CrossRef]
  18. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.24, 1866–1878 (1961). [CrossRef]
  19. S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, “Spectral shifts and line-shapes asymmetries in the resonant response of grating waveguide structures,” Opt. Commun.145, 291–299 (1998). [CrossRef]
  20. S. S. Wang, R. Magnusson, J. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A7, 1470–1474 (1990). [CrossRef]
  21. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the fano resonance in optical resonators,” J. Opt. Soc. Am. A20, 569–572 (2002). [CrossRef]
  22. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002). [CrossRef]
  23. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron.33, 359–371 (2001). [CrossRef]
  24. S. L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol.5, 5–15 (1987). [CrossRef]
  25. W. P. Huang and J. Mu, “Complex coupled-mode theory for optical waveguides,” Opt. Express17, 19134–19152 (2009). [CrossRef]
  26. B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, “Multipole analysis of photonic crystal fibers with coated inclusions,” Opt. Express14, 10851–10864 (2006). [CrossRef] [PubMed]
  27. M. M. Z. Kharadly and J. E. Lewis, “Properties of dielectric-tube waveguides,” Proc. IEEE116, 214–224 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited