OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14362–14370

Nonlinearity compensation using dispersion-folded digital backward propagation

Likai Zhu and Guifang Li  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14362-14370 (2012)
http://dx.doi.org/10.1364/OE.20.014362


View Full Text Article

Enhanced HTML    Acrobat PDF (979 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A computationally efficient dispersion-folded (D-folded) digital backward propagation (DBP) method for nonlinearity compensation of dispersion-managed fiber links is proposed. At the optimum power level of long-haul fiber transmission, the optical waveform evolution along the fiber is dominated by the chromatic dispersion. The optical waveform and, consequently, the nonlinear behavior of the optical signal repeat at locations of identical accumulated dispersion. Hence the DBP steps can be folded according to the accumulated dispersion. Experimental results show that for 6,084 km single channel transmission, the D-folded DBP method reduces the computation by a factor of 43 with negligible penalty in performance. Simulation of inter-channel nonlinearity compensation for 13,000 km wavelength-division multiplexing (WDM) transmission shows that the D-folded DBP method can reduce the computation by a factor of 37.

© 2012 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 27, 2012
Revised Manuscript: May 18, 2012
Manuscript Accepted: May 25, 2012
Published: June 12, 2012

Citation
Likai Zhu and Guifang Li, "Nonlinearity compensation using dispersion-folded digital backward propagation," Opt. Express 20, 14362-14370 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-14362


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, Elsevier, 2001).
  2. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411(6841), 1027–1030 (2001). [CrossRef] [PubMed]
  3. B. C. Kurtzke, “Suppression of fiber nonlinearities by appropriate dispersion management,” IEEE Photon. Technol. Lett.5(10), 1250–1253 (1993). [CrossRef]
  4. K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, and K. Kokura, “Dispersion compensating fiber used as a transmission fiber: inverse/reverse dispersion fiber,” J. Opt. Fiber Commun. Rep.3(5), 292–339 (2006). [CrossRef]
  5. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express16(2), 753–791 (2008). [CrossRef] [PubMed]
  6. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express15(5), 2120–2126 (2007). [CrossRef] [PubMed]
  7. H. Sun, K.-T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express16(2), 873–879 (2008). [CrossRef] [PubMed]
  8. E. Yamazaki, S. Yamanaka, Y. Kisaka, T. Nakagawa, K. Murata, E. Yoshida, T. Sakano, M. Tomizawa, Y. Miyamoto, S. Matsuoka, J. Matsui, A. Shibayama, J. Abe, Y. Nakamura, H. Noguchi, K. Fukuchi, H. Onaka, K. Fukumitsu, K. Komaki, O. Takeuchi, Y. Sakamoto, H. Nakashima, T. Mizuochi, K. Kubo, Y. Miyata, H. Nishimoto, S. Hirano, and K. Onohara, “Fast optical channel recovery in field demonstration of 100-Gbit/s Ethernet over OTN using real-time DSP,” Opt. Express19(14), 13179–13184 (2011). [CrossRef] [PubMed]
  9. J. M. Kahn and K.-P. Ho, “A bottleneck for optical fibres,” Nature411(6841), 1007–1010 (2001). [CrossRef] [PubMed]
  10. E. B. Desurvire, “Capacity demand and technology challenges for lightwave systems in the next two decades,” J. Lightwave Technol.24(12), 4697–4710 (2006). [CrossRef]
  11. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol.28(4), 423–433 (2010). [CrossRef]
  12. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol.28(4), 662–701 (2010). [CrossRef]
  13. L. Li, Z. Tao, L. Liu, W. Yan, S. Oda, T. Hoshida, and J. C. Rasmussen, “XPM tolerant adaptive carrier phase recovery for coherent receiver based on phase noise statistics monitoring,” in Proc. ECOC’09, Paper P3.16 (2009).
  14. K.-P. Ho and J. M. Kahn, “Electronic compensation technique to mitigate nonlinear phase noise,” J. Lightwave Technol.22(3), 779–783 (2004). [CrossRef]
  15. L. B. Du and A. J. Lowery, “Practical XPM compensation method for coherent optical OFDM systems,” IEEE Photon. Technol. Lett.22(5), 320–322 (2010). [CrossRef]
  16. K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett.18(2), 403–405 (2006). [CrossRef]
  17. X. Li, X. Chen, G. Goldfarb, E. F. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express16(2), 880–888 (2008). [CrossRef] [PubMed]
  18. E. Ip and J. M. Kahn, “Fiber impairment compensation using coherent detection and digital signal processing,” J. Lightwave Technol.28(4), 502–519 (2010). [CrossRef]
  19. D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron.16(5), 1217–1226 (2010). [CrossRef]
  20. O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol.21(1), 61–68 (2003). [CrossRef]
  21. S. Oda, T. Tanimura, T. Hoshida, C. Ohshima, H. Nakashima, Z. Tao, and J. C. Rasmussen, “112 Gb/s DP-QPSK transmission using a novel nonlinear compensator in digital coherent receiver.” in Proc. OFC’09, Paper OThR6 (2009).
  22. E. F. Mateo, L. Zhu, and G. Li, “Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using backward propagation,” Opt. Express16(20), 16124–16137 (2008). [CrossRef] [PubMed]
  23. E. F. Mateo, F. Yaman, and G. Li, “Efficient compensation of inter-channel nonlinear effects via digital backward propagation in WDM optical transmission,” Opt. Express18(14), 15144–15154 (2010). [CrossRef] [PubMed]
  24. Q. Zhang and M. I. Hayee, “Symmetrized split-step Fourier scheme to control global simulation accuracy in fiber-optic communication systems,” J. Lightwave Technol.26(2), 302–316 (2008). [CrossRef]
  25. L. B. Du and A. J. Lowery, “Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems,” Opt. Express18(16), 17075–17088 (2010). [CrossRef] [PubMed]
  26. D. Rafique, M. Mussolin, M. Forzati, J. Mårtensson, M. N. Chugtai, and A. D. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express19(10), 9453–9460 (2011). [CrossRef] [PubMed]
  27. L. Zhu and G. Li, “Folded digital backward propagation for dispersion-managed fiber-optic transmission,” Opt. Express19(7), 5953–5959 (2011). [CrossRef] [PubMed]
  28. L. Zhu, X. Li, E. F. Mateo, and G. Li, “Complementary FIR filter pair for distributed impairment compensation of WDM fiber transmission,” IEEE Photon. Technol. Lett.21(5), 292–294 (2009). [CrossRef]
  29. J. K. Fischer, C.-A. Bunge, and K. Petermann, “Equivalent single-span model for dispersion-managed fiber-optic transmission systems,” J. Lightwave Technol.27(16), 3425–3432 (2009). [CrossRef]
  30. C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express17(6), 4815–4823 (2009). [CrossRef] [PubMed]
  31. V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett.20(17), 1473–1475 (2008). [CrossRef]
  32. T. Yoshida, T. Sugihara, H. Goto, T. Tokura, K. Ishida, and T. Mizuochi, “A study on statistical equalization of intra-channel fiber nonlinearity for digital coherent optical systems,” in Proc. ECOC’11, Tu.3.A. (2011).
  33. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett.15(23), 1351–1353 (1990). [CrossRef] [PubMed]
  34. T. Tanimura, T. Hoshida, T. Tanaka, L. Li, S. Oda, H. Nakashima, Z. Tao, and J. C. Rasmussen, “Semi-blind nonlinear equalization in coherent multi-span transmission system with inhomogeneous span parameters,” in Proc. OFC’10, OMR6 (2010).
  35. L. Zhu, F. Yaman, and G. Li, “Experimental demonstration of XPM compensation for WDM fibre transmission,” Electron. Lett.46(16), 1140–1141 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited