OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14371–14379

Bright and dark helices of light

Ole Steuernagel  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14371-14379 (2012)
http://dx.doi.org/10.1364/OE.20.014371


View Full Text Article

Enhanced HTML    Acrobat PDF (11949 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser beams can be made to form bright and dark intensity helices of light. Such helices have a pitch length on the order of a wavelength and may have applications in lithography and the manipulation of particles through optical forces. The formation of bright helices is more strongly constrained by optical resolution limits than that of dark helices, corresponding scaling laws are derived and their relevance for photo-lithography pointed out. It is shown how to arrange dark helices on a grid in massively parallel fashion in order to create handed materials using photo-lithographic techniques.

© 2012 OSA

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.3160) Physical optics : Interference
(160.1585) Materials : Chiral media
(110.4235) Imaging systems : Nanolithography

ToC Category:
Physical Optics

History
Original Manuscript: February 16, 2012
Revised Manuscript: April 23, 2012
Manuscript Accepted: April 23, 2012
Published: June 12, 2012

Citation
Ole Steuernagel, "Bright and dark helices of light," Opt. Express 20, 14371-14379 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-14371


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992). [CrossRef] [PubMed]
  2. M. Padgett and L. Allen, “Light with a twist in its tail,” Cont. Phys.41, 275–285 (2000). [CrossRef]
  3. M. Padgett, J. Courtial, and L. Allen, “Light’s Orbital Angular Momentum,” Phys. Today57, 35–40 (2004). [CrossRef]
  4. M. Harris, C. A. Hill, and J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun.106, 161–166 (1994). [CrossRef]
  5. J. M. Vaughan, “Interferometry, atoms and light scattering: one hundred years of optics,” J. Opt. A: Pure Appl. Opt.1, 750–768 (1999). [CrossRef]
  6. J. Leach, S. Keen, M. J. Padgett, C. Saunter, and G. D. Love, “Direct measurement of the skew angle of the Poynting vector in a helically phased beam,” Opt. Express14, 11919–11924 (2006). [CrossRef] [PubMed]
  7. O. Steuernagel, “Equivalence between focused paraxial beams and the quantum harmonic oscillator,” Am. J. Phys.73, 625–629 (2005). [CrossRef]
  8. J. Lekner, “LETTER TO THE EDITOR: Helical light pulses,” J. Opt. A: Pure Appl. Opt.6, L29–L32 (2004). [CrossRef]
  9. J. Hamazaki, Y. Mineta, K. Oka, and R. Morita, “Direct observation of Gouy phase shift in a propagating optical vortex,” Opt. Express14, 8382–8392 (2006). [CrossRef] [PubMed]
  10. S. M. Baumann, D. M. Kalb, L. H. MacMillan, and E. J. Galvez, “Propagation dynamics of optical vortices due to Gouy phase,” Opt. Express17, 9818–9827 (2009). [CrossRef] [PubMed]
  11. J. Becker, P. Rose, M. Boguslawski, and C. Denz, “Systematic approach to complex periodic vortex and helix lattices,” Opt. Express19, 9848–9862 (2011). [CrossRef] [PubMed]
  12. K. Volke-Sepúlveda and R. Jáuregui, “All-optical 3D atomic loops generated with Bessel light fields,” J. Phys. B: At. Mol. Phys.42, 085303 (2009). [CrossRef]
  13. K. Staliunas, “Vortex Creation in Bose-Einstein Condensates by Diffraction on a Helical Light Grating,” http://www.arxiv.org/abs/cond-mat/9912268 (1999).
  14. M. Bhattacharya, “Lattice with a twist: Helical waveguides for ultracold matter,” Opt. Commun.279, 219–222 (2007). [CrossRef]
  15. J. F. Nye and M. V. Berry, “Dislocations in Wave Trains,” R. Soc. London Proc. Ser. A336, 165–190 (1974). [CrossRef]
  16. S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic Delivery of a Single Atom,” Science293, 278–281 (2001). [CrossRef] [PubMed]
  17. D. Meschede and H. Metcalf, “Atomic nanofabrication: atomic deposition and lithography by laser and magnetic forces,” J. Phys. D: Appl. Phys.36, R17–R38 (2003). [CrossRef]
  18. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett.96, 163905 (2006). [CrossRef] [PubMed]
  19. J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Laser beams: Knotted threads of darkness,” Nature432, 165–165 (2004). [CrossRef] [PubMed]
  20. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and Manipulation of Three-Dimensional Optically Trapped Structures,” Science296, 1101–1103 (2002). [CrossRef] [PubMed]
  21. F. Pampaloni and J. Enderlein, “Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams: A primer,” http://www.arxiv.org/abs/physics/0410021 (2004).
  22. H. A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer, Heidelberg, 2000).
  23. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled Rotation of Optically Trapped Microscopic Particles,” Science292, 912–914 (2001). [CrossRef] [PubMed]
  24. K. Dholakia, G. C. Spalding, and M. MacDonald, “Optical tweezers: The next generation,” Phys. World15, 31–35 (2002).
  25. M. P. MacDonald, K. Volke-Sepulveda, L. Paterson, J. Arlt, W. Sibbett, and K. Dholakia, “Revolving interference patterns for the rotation of optically trapped particles,” Opt. Commun.201, 21–28 (2002). [CrossRef]
  26. S. Chu, “Nobel Lecture: The manipulation of neutral particles,” Rev. Mod. Phys.70, 685–706 (1998). [CrossRef]
  27. S. W. Hell, “Far-Field Optical Nanoscopy,” Science316, 1153–1158 (2007). [CrossRef] [PubMed]
  28. Y. Kim, H. Jung, S. Kim, J. Jang, J. Y. Lee, and J. W. Hahn, “Accurate near-field lithography modeling and quantitative mapping of the near-field distribution of a plasmonic nanoaperture in a metal,” Opt. Express19, 19296–19309 (2011). [CrossRef] [PubMed]
  29. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412, 697–698 (2001). [CrossRef] [PubMed]
  30. A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials1, 2–11 (2007). [CrossRef]
  31. I. V. Semchenko, S. A. Khakhomov, and S. A. Tretyakov, “Chiral metamaterial with unit negative refraction index,” Eur. Phys. J. Appl. Phys.46, 032607 (2009). [CrossRef]
  32. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1, 97–105 (2007). [CrossRef]
  33. Y. B. Gaididei, P. L. Christiansen, P. G. Kevrekidis, H. Büttner, and A. R. Bishop, “Localization of nonlinear excitations in curved waveguides,” New J. Phys.7, 52–52 (2005). [CrossRef]
  34. P. Exner and M. Fraas, “A remark on helical waveguides,” Phys. Lett. A369, 393–399 (2007). [CrossRef]
  35. X.-L. Qi and S.-C. Zhang, “Field-induced gap and quantized charge pumping in a nanoscale helical wire,” Phys. Rev. B79, 235442 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited