OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14406–14418

Influence of PMD on fiber nonlinearity compensation using digital back propagation

Guanjun Gao, Xi Chen, and William Shieh  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14406-14418 (2012)
http://dx.doi.org/10.1364/OE.20.014406


View Full Text Article

Enhanced HTML    Acrobat PDF (1026 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With ideal nonlinearity compensation using digital back propagation (DBP), the transmission performance of an optical fiber channel has been considered to be limited by nondeterministic nonlinear signal-ASE interaction. In this paper, we conduct theoretical and numerical study on nonlinearity compensation using DBP in the presence of polarization-mode dispersion (PMD). Analytical expressions of transmission performance with DBP are derived and substantiated by numerical simulations for polarization-division-multiplexed systems under the influence of PMD effects. We find that nondeterministic distributed PMD impairs the effectiveness of DBP-based nonlinearity compensation much more than nonlinear signal-ASE interaction, and is therefore the fundamental limitation to single-mode fiber channel capacity.

© 2012 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 16, 2012
Revised Manuscript: May 14, 2012
Manuscript Accepted: May 14, 2012
Published: June 13, 2012

Citation
Guanjun Gao, Xi Chen, and William Shieh, "Influence of PMD on fiber nonlinearity compensation using digital back propagation," Opt. Express 20, 14406-14418 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-14406


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express16(2), 753–791 (2008). [CrossRef] [PubMed]
  2. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express15(5), 2120–2126 (2007). [CrossRef] [PubMed]
  3. W. Shieh and C. Athaudage, “coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006). [CrossRef]
  4. A. Chowdhury, G. Raybon, R. J. Essiambre, J. H. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, and S. Chandrasekhar, “Compensation of intrachannel nonlinearities in 40-Gb/s pseudolinear systems using optical-phase conjugation,” J. Lightwave Technol.23(1), 172–177 (2005). [CrossRef]
  5. S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabrò, H. Suche, P. M. Krummrich, W. Sohler, G.-D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra-long-haul phase-shift-keyed transmission,” J. Lightwave Technol.24(1), 54–64 (2006). [CrossRef]
  6. W. Shieh and Y. Tang, “Ultrahigh-speed signal transmission over nonlinear and dispersive fiber optic channel: the multicarrier advantage,” IEEE Photon. J.2(3), 276–283 (2010). [CrossRef]
  7. X. Liu, F. Buchali, and R. W. Tkach, “Improving the nonlinear tolerance of polarization-division-multiplexed CO-OFDM in long-haul fiber transmission,” J. Lightwave Technol.27(16), 3632–3640 (2009). [CrossRef]
  8. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol.26(20), 3416–3425 (2008). [CrossRef]
  9. E. F. Mateo, L. Zhu, and G. Li, “Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using backward propagation,” Opt. Express16(20), 16124–16137 (2008). [CrossRef] [PubMed]
  10. E. F. Mateo and G. Li, “Compensation of interchannel nonlinearities using enhanced coupled equations for digital backward propagation,” Appl. Opt.48(25), F6–F10 (2009). [CrossRef] [PubMed]
  11. E. F. Mateo, F. Yaman, and G. Li, “Efficient compensation of inter-channel nonlinear effects via digital backward propagation in WDM optical transmission,” Opt. Express18(14), 15144–15154 (2010). [CrossRef] [PubMed]
  12. E. F. Mateo, X. Zhou, and G. Li, “Improved digital backward propagation for the compensation of inter-channel nonlinear effects in polarization-multiplexed WDM systems,” Opt. Express19(2), 570–583 (2011). [CrossRef] [PubMed]
  13. L. B. Du and A. J. Lowery, “Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems,” Opt. Express18(16), 17075–17088 (2010). [CrossRef] [PubMed]
  14. L. B. Du, B. Schmidt, and A. Lowery, “Efficient digital backpropagation for PDM-CO-OFDM optical transmission systems,” OFC’ 2010, paper OTuE2.
  15. E. Ip and J. M. Kahn, “Nonlinear impairment compensation using backpropagation,” in Optical Fiber, New Developments, C. Lethien, Ed., In-Tech, Vienna Austria, December (2009).
  16. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol.28(6), 939–951 (2010). [CrossRef]
  17. F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J.2(5), 816–832 (2010). [CrossRef]
  18. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol.28(4), 662–701 (2010). [CrossRef]
  19. D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express19(4), 3449–3454 (2011). [CrossRef] [PubMed]
  20. G. Gao, X. Chen, W. Shieh, “Limitation of fiber nonlinearity compensation using digital back propagation,” OFC’2012, paper OMA3.
  21. M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, and V. Karagodsky, “Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links,” Opt. Express16(20), 15777–15810 (2008). [CrossRef] [PubMed]
  22. X. Chen and W. Shieh, “Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems,” Opt. Express18(18), 19039–19054 (2010). [CrossRef] [PubMed]
  23. W. Shieh and X. Chen, “Information spectral efficiency and launch power density limits due to fiber nonlinearity for coherent optical OFDM systems,” IEEE Photon. J.3(2), 158–173 (2011). [CrossRef]
  24. K. Inoue, “Phase-mismatching characteristic of four-wave mixing in fiber lines with multistage optical amplifiers,” Opt. Lett.17(11), 801–803 (1992). [CrossRef] [PubMed]
  25. A. Milton and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Abramowitz and Stegun, eds. (Dover, 1964).
  26. P. K. A. Wai and C. R. Menyuk, “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol.14(2), 148–157 (1996). [CrossRef]
  27. D. Marcuse, C. R. Menyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol.15(9), 1735–1746 (1997). [CrossRef]
  28. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fiber communications,” Nature411(6841), 1027–1030 (2001). [CrossRef] [PubMed]
  29. A. Vannucci and A. Bononi, “Statistical characterization of the Jones Matrix of long fibers affected by polarization mode dispersion (PMD),” J. Lightwave Technol.20(5), 811–821 (2002). [CrossRef]
  30. A. Bononi and A. Vannucci, “Statistics of the Jones matrix of fibers affected by polarization mode dispersion,” Opt. Lett.26(10), 675–677 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited