OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14460–14470

UV-visible Faraday rotators based on rare-earth fluoride single crystals: LiREF4 (RE = Tb, Dy, Ho, Er and Yb), PrF3 and CeF3

Valentyn Vasyliev, Encarnacíon G. Villora, Masaru Nakamura, Yoshiyuki Sugahara, and Kiyoshi Shimamura  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 14460-14470 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1660 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High optical quality LiREF4 (RE = Tb3+, Dy3+, Ho3+, Er3+ and Yb3+), PrF3 and CeF3 single crystals have been grown by the Czochralski technique. Their magneto-optical properties have been measured and analyzed in detail in the ultraviolet-visible wavelength region, and their figures of merit as Faraday rotators have been determined. CeF3 presents superior properties above 300 nm, showing a figure of merit higher than that of the reference material, terbium-gallium-garnet, which is nowadays used in the visible-near infrared. PrF3 is the best rotator for the 220-300 nm range. Towards shorter wavelength and in the vacuum ultraviolet, it is shown that the LiREF4 crystals are unique rotators. Overall, the rare-earth fluoride single crystals studied here exhibit better properties than other materials considered so far, and therefore they have potential to cover the increasing demand for new and improved Faraday rotators in the ultraviolet-visible wavelength region.

© 2012 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.2240) Optical devices : Faraday effect
(230.3810) Optical devices : Magneto-optic systems
(260.7190) Physical optics : Ultraviolet

ToC Category:
Optical Devices

Original Manuscript: March 5, 2012
Revised Manuscript: April 21, 2012
Manuscript Accepted: April 25, 2012
Published: June 13, 2012

Valentyn Vasyliev, Encarnacíon G. Villora, Masaru Nakamura, Yoshiyuki Sugahara, and Kiyoshi Shimamura, "UV-visible Faraday rotators based on rare-earth fluoride single crystals: LiREF4 (RE = Tb, Dy, Ho, Er and Yb), PrF3 and CeF3," Opt. Express 20, 14460-14470 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Weber, Faraday Rotator Materials (Lawrence Livermore National Laboratory, University of California, Livermore, 1982).
  2. F. Mitschke, Fiber Optics, Physics and Technology (Springer, 2009).
  3. E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett.99(1), 011111 (2011). [CrossRef]
  4. K. Ueda and H. Takuma, “A novel spectrometric technique based on Fourier transformation of transmission signal of Faraday rotator,” Rev. Laser Eng.12(11), 652–659 (1984). [CrossRef]
  5. K. Ueda, H. Nishioka, H. Hisano, T. Kaminaga, and H. Takuma, “UV Faraday rotator and its application on KrF laser technology,” Rev. Laser Eng.13(10), 805–813 (1985). [CrossRef]
  6. S. Ramaseshan, “Determination of the magneto-optical anomaly of some glasses,” Proc. of Indian Acad. Phys Sci A.24, 426–432 (1946).
  7. M. J. Weber, Handbook of Optical Materials (CRC Press LLC, 2003).
  8. C. B. Rubinstein, S. B. Berger, L. G. Vanuitert, and W. A. Bonner, “Faraday rotation of rare-earth (III) borate glasses,” J. Appl. Phys.35(8), 2338–2340 (1964). [CrossRef]
  9. K. Tanaka, N. Tatehata, K. Fujita, K. Hirao, and N. Soga, “The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing Pr3+,” J. Phys. D Appl. Phys.31(19), 2622–2627 (1998). [CrossRef]
  10. V. Letellier, A. Seignac, A. Lefloch, and M. Matecki, “Magneto-optical properties of heavily rare-earth doped non-crystalline fluorophosphates,” J. Non-Cryst. Solids111(1), 55–62 (1989). [CrossRef]
  11. T. Hayakawa, M. Nogami, N. Nishi, and N. Sawanobori, “Faraday rotation effect of highly Tb2O3/Dy2O3-concentrated B2O3-Ga2O3-SiO2-P2O5 glasses,” Chem. Mater.14(8), 3223–3225 (2002). [CrossRef]
  12. G. T. Petrovskii, I. S. Edelman, T. V. Zarubina, A. V. Malakhovskii, V. N. Zabluda, and M. Y. Ivanov, “Faraday-effect and spectral properties of high-concentrated rare-earth-oxide glasses in visible and near UV region,” J. Non-Cryst. Solids130(1), 35–40 (1991). [CrossRef]
  13. J. R. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids213, 193–198 (1997). [CrossRef]
  14. M. Koralewski, “Dispersion of the Faraday-rotation in KDP-type crystals by pulse high magnetic-field,” Phys. Status Solidi A65(1), K49–K53 (1981). [CrossRef]
  15. J. L. Dexter, J. Landry, D. G. Cooper, and J. Reintjes, “Ultraviolet optical isolators utilizing KDP-isomorphs,” Opt. Commun.80(2), 115–118 (1990). [CrossRef]
  16. P. Molina, V. Vasyliev, E. G. Víllora, and K. Shimamura, “CeF3 and PrF3 as UV-visible Faraday rotators,” Opt. Express19(12), 11786–11791 (2011). [CrossRef] [PubMed]
  17. V. Vasyliev, P. Molina, M. Nakamura, E. G. Villora, and K. Shimamura, “Magneto-optical properties of Tb0.81Ca0.19F2.81 and Tb0.76Sr0.24F2.76 single crystals,” Opt. Mater.33(11), 1710–1714 (2011). [CrossRef]
  18. B. P. Sobolev, The Rare Earth Trifluorides. Pt.1. The high temperature chemistry of the rare earth trifluorides (Institut d'Estudis Catalanas, per a aquesta edicio Carrer del Carme, Barcelona, 2000).
  19. B. P. Sobolev, P. P. Fedorov, K. B. Seiranian, and N. L. Tkachenko, “Problem of polymorphism and fusion of lanthanide trifluorides. 2. Interaction of LnF3 with MF2 (M=Ca, Sr, Ba), change in structural type in LnF3 series, and thermal characteristics,” J. Solid State Chem.17(1-2), 201–212 (1976). [CrossRef]
  20. B. P. Sobolev, P. P. Fedorov, D. B. Shteynberg, B. V. Sinitsyn, and G. S. Shakhkalamian, “Problem of polymorphism and fusion of lanthanide trifluorides. 1. Influence of oxygen on phase-transition temperatures,” J. Solid State Chem.17(1-2), 191–199 (1976). [CrossRef]
  21. K. Shimamura, E. G. Villora, S. Nakakita, M. Nikl, and N. Ichinose, “Growth and scintillation characteristics of CeF3, PrF3 and NdF3 single crystals,” J. Cryst. Growth264(1-3), 208–215 (2004). [CrossRef]
  22. R. E. Thoma, H. Insley, C. F. Weaver, H. A. Friedman, L. A. Harris, and H. A. Yakel, “Phase equilibria in system LiF-YF3,” J. Phys. Chem.-Us. 65, 1096–1099 (1961).
  23. R. T. Wegh, A. Meijerink, R.-J. Lamminmäki, and Jorma Hölsä “Extending Dieke's diagram,” J. Lumin.87–89, 1002–1004 (2000). [CrossRef]
  24. G. H. Dieke and H. M. Crosswhite, “The spectra of the doubly and triply ionized rare earths,” Appl. Opt.2(7), 675–686 (1963). [CrossRef]
  25. J. Van Vleck and M. Hebb, “On the paramagnetic rotation of tysonite,” Phys. Rev.46(1), 17–32 (1934). [CrossRef]
  26. C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc., New York).
  27. M. J. Weber, R. Morgret, S. Y. Leung, J. A. Griffin, D. Gabbe, and A. Linz, “Magneto-optical properties of KTb3F10 and LiTbF4 crystals,” J. Appl. Phys.49(6), 3464–3469 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited