OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14494–14507

Linkage of oxygen deficiency defects and rare earth concentrations in silica glass optical fiber probed by ultraviolet absorption and laser excitation spectroscopy

Y.-S. Liu, T. C. Galvin, T. Hawkins, J. Ballato, L. Dong, P.R. Foy, P.D. Dragic, and J. G. Eden  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14494-14507 (2012)
http://dx.doi.org/10.1364/OE.20.014494


View Full Text Article

Enhanced HTML    Acrobat PDF (704 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultraviolet absorption measurements and laser excitation spectroscopy in the vicinity of 248 nm provide compelling evidence for linkages between the oxygen deficiency center (ODC) and rare earth concentrations in Yb and Er-doped glass optical fibers. Investigations of YAG-derived and solution-doped glass fibers are described. For both Yb and Er-doped fibers, the dependence of Type II ODC absorption on the rare earth number density is approximately linear, but the magnitude of the effect is greater for Yb-doped fibers. Furthermore, laser excitation spectra demonstrate unambiguously the existence of an energy transfer mechanism coupling an ODC with Yb3+. Photopumping glass fibers with a Ti:sapphire laser/optical parametric amplifier system, tunable over the 225-265 nm region, or with a KrF laser at 248.4 nm show: 1) emission features in the 200-1100 nm interval attributable only to the ODC (Type II) defect or Yb3+, and 2) the excitation spectra for ODC (II) emission at ~280 nm and Yb3+ fluorescence (λ ~1.03 μm) to be, within experimental uncertainty, identical. The latter demonstrates that, when irradiating Yb-doped silica fibers between ~240 and 255 nm, the ODC (II) defect is at least the primary precursor to Yb3+ emission. Consistent with previous reports in the literature, the data show the ODC (II) absorption spectrum to have a peak wavelength and breadth of ~246 nm and ~19 nm (FWHM). Experiments also reveal that, in the absence of Yb, incorporating either Al2O3 or Y2O3 into glass fibers has a negligible impact on the ODC concentration. Not only do the data reported here demonstrate the relationship between the ODC (II) number density and the Yb doping concentration, but they also suggest that the appearance of ODC defects in the fiber is associated with the introduction of Yb and the process by which the fiber is formed.

© 2012 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2290) Fiber optics and optical communications : Fiber materials
(160.5690) Materials : Rare-earth-doped materials
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 27, 2012
Revised Manuscript: May 30, 2012
Manuscript Accepted: June 5, 2012
Published: June 14, 2012

Citation
Y.-S. Liu, T. C. Galvin, T. Hawkins, J. Ballato, L. Dong, P.R. Foy, P.D. Dragic, and J. G. Eden, "Linkage of oxygen deficiency defects and rare earth concentrations in silica glass optical fiber probed by ultraviolet absorption and laser excitation spectroscopy," Opt. Express 20, 14494-14507 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-14494


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006). [CrossRef] [PubMed]
  2. I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. Bello Doua, and F. Salin, “Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber,” Opt. Express 15(4), 1606–1611 (2007). [CrossRef] [PubMed]
  3. M. Engholm and L. Norin, “Comment on “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation”,” Opt. Lett. 33(11), 1216, discussion 1217–1218 (2008). [CrossRef] [PubMed]
  4. M. Engholm, L. Norin, and D. Åberg, “Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation,” Opt. Lett. 32(22), 3352–3354 (2007). [CrossRef] [PubMed]
  5. S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32(12), 1626–1628 (2007). [CrossRef] [PubMed]
  6. M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express 16(2), 1260–1268 (2008). [CrossRef] [PubMed]
  7. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008). [CrossRef] [PubMed]
  8. A. V. Amossov and A. O. Rybaltovsky, “Oxygen deficient centers in silica glasses: a review of their properties and structure,” J. Non-Cryst. Solids 179, 75–83 (1994). [CrossRef]
  9. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998). [CrossRef]
  10. J. W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids 239(1-3), 57–65 (1998). [CrossRef]
  11. H. Imai, K. Arai, H. Imagawa, H. Hosono, and Y. Abe, “Two types of oxygen-deficient centers in synthetic silica glass,” Phys. Rev. B Condens. Matter 38(17), 12772–12775 (1988). [CrossRef] [PubMed]
  12. H. Imai, K. Arai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, “Generation of E’ centers and oxygen hole centers in synthetic silica glasses by γ irradiation,” Phys. Rev. B Condens. Matter 48(5), 3116–3123 (1993). [CrossRef] [PubMed]
  13. C. G. Carlson, K. E. Keister, P. D. Dragic, A. Croteau, and J. G. Eden, “Photoexcitation of Yb-doped aluminosilicate fibers at 250 nm: evidence for excitation transfer from oxygen deficiency centers to Yb3+,” J. Opt. Soc. Am. B 27(10), 2087–2094 (2010). [CrossRef]
  14. J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009). [CrossRef]
  15. C. Pare, “Influence of inner cladding shape and stress-applying parts on the pump absorption of a double-clad fiber amplifier,” Proc. SPIE 5260, 272–277 (2003). [CrossRef]
  16. H. Hosono and R. A. Weeks, “Bleaching of peroxy radical in SiO2 glass with 5 eV light,” J. Non-Cryst. Solids 116(2-3), 289–292 (1990). [CrossRef]
  17. L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Stat. Sol. C 1, 15–24 (1998).
  18. D. L. Griscom and M. Mizuguchi, “Determination of the visible range optical absorption spectrum of peroxy radicals in gamma-irradiated fused silica,” J. Non-Cryst. Solids 239(1-3), 66–77 (1998). [CrossRef]
  19. P. D. Dragic, C. G. Carlson, and A. Croteau, “Characterization of defect luminescence in Yb doped silica fibers: part I NBOHC,” Opt. Express 16(7), 4688–4697 (2008). [CrossRef] [PubMed]
  20. S. Magne, Y. Ouerdane, M. Druetta, J. P. Goure, P. Ferdinand, and G. Monnom, “Cooperative luminescence in a ytterbium-doped silica fibre,” Opt. Commun. 111(3-4), 310–316 (1994). [CrossRef]
  21. K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986). [CrossRef]
  22. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited