OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14514–14533

Full vectorial analysis of polarization effects in optical nanowires

Shahraam Afshar V., M. A. Lohe, Wen Qi Zhang, and Tanya M. Monro  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14514-14533 (2012)
http://dx.doi.org/10.1364/OE.20.014514


View Full Text Article

Acrobat PDF (3875 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a full theoretical analysis of the nonlinear interactions of the two polarizations of a waveguide by means of a vectorial model of pulse propagation which applies to high index subwavelength waveguides. In such waveguides there is an anisotropy in the nonlinear behavior of the two polarizations that originates entirely from the waveguide structure, and leads to switching properties. We determine the stability properties of the steady state solutions by means of a Lagrangian formulation. We find all static solutions of the nonlinear system, including those that are periodic with respect to the optical fiber length as well as nonperiodic soliton solutions, and analyze these solutions by means of a Hamiltonian formulation. We discuss in particular the switching solutions which lie near the unstable steady states, since they lead to self-polarization flipping which can in principle be employed to construct fast optical switches and optical logic gates.

© 2012 OSA

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(130.4310) Integrated optics : Nonlinear
(190.3270) Nonlinear optics : Kerr effect
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 30, 2012
Revised Manuscript: May 27, 2012
Manuscript Accepted: May 30, 2012
Published: June 14, 2012

Citation
Shahraam Afshar V., M. A. Lohe, Wen Qi Zhang, and Tanya M. Monro, "Full vectorial analysis of polarization effects in optical nanowires," Opt. Express 20, 14514-14533 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-14514


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. H. Stolen, J. Botineau, and A. Ashkin, “Intensity discrimination of optical pulses with birefringent fibers,” Opt. Lett.7, 512–514 (1982). [CrossRef] [PubMed]
  2. F. Matera and S. Wabnitz, “Nonlinear polarization evolution and instability in a twisted birefringent fiber,” Opt. Lett.11, 467–469 (1986). [CrossRef] [PubMed]
  3. H. G. Winful, “Polarization instabilities in birefringent nonlinear media: application to fiber-optic devices,” Opt. Lett.11, 33–35 (1986). [CrossRef] [PubMed]
  4. C. Menyuk, “Nonlinear pulse propagation in birefringent optical fibers,” IEEE J. Quantum Electron.23, 174–176 (1987). [CrossRef]
  5. S. F. Feldman, D. A. Weinberger, and H. G. Winful, “Polarization instability in a twisted birefringent optical fiber,” J. Opt. Soc. Am. B10, 1191–1201 (1993). [CrossRef]
  6. G. Millot, E. Seve, and S. Wabnitz, “Polarization symmetry breaking and pulse train generation from the modulation of light waves,” Phys. Rev. Lett.79, 661–664 (1997). [CrossRef]
  7. G. Millot, E. Seve, S. Wabnitz, and M. Haelterman, “Dark-soliton-like pulse-train generation from induced modulational polarization instability in a birefringent fiber,” Opt. Lett.23, 511–513 (1998). [CrossRef]
  8. S. Pitois, G. Millot, and S. Wabnitz, “Polarization domain wall solitons with counterpropagating laser beams,” Phys. Rev. Lett.81, 1409–1412 (1998). [CrossRef]
  9. S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear polarization dynamics of counterpropagating waves in an isotropic optical fiber: theory and experiments,” J. Opt. Soc. Am. B18, 432–443 (2001). [CrossRef]
  10. S. Wabnitz, “Polarization domain wall solitons in elliptically birefringent optical fibers,” PIERS ONLINE5, 621–624 (2009). [CrossRef]
  11. V. V. Kozlov and S. Wabnitz, “Theoretical study of polarization attraction in high-birefringence and spun fibers,” Opt. Lett.35, 3949–3951 (2010). [CrossRef] [PubMed]
  12. J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express18, 15311–15317 (2010). [CrossRef] [PubMed]
  13. V. V. Kozlov, J. Nuño, and S. Wabnitz, “Theory of lossless polarization attraction in telecommunication fibers,” J. Opt. Soc. Am. B28, 100–108 (2011). [CrossRef]
  14. V. E. Zakharov and A. V. Mikhailov, “Polarization domains in nonlinear optics,” JETP Lett.45, 349–352 (1987).
  15. S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attractors in conservative counterpropagating four-wave interaction,” Europhys. Lett.70, 88–94 (2005). [CrossRef]
  16. S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express16, 6646–6651 (2008). [CrossRef] [PubMed]
  17. S. Wabnitz, “Cross-polarization modulation domain wall solitons for WDM signals in birefringent optical fibers,” IEEE Photon. Technol. Lett.21, 875–877 (2009). [CrossRef]
  18. E. Seve, G. Millot, S. Trillo, and S. Wabnitz, “Large-signal enhanced frequency conversion in birefringent optical fibers: theory and experiments,” J. Opt. Soc. Am. B15, 2537–2551 (1998). [CrossRef]
  19. G. Gregori and S. Wabnitz, “New exact solutions and bifurcations in the spatial distribution of polarization in third-order nonlinear optical interactions,” Phys. Rev. Lett.56, 600–603 (1986). [CrossRef] [PubMed]
  20. S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron.18, 1580–1583 (1982). [CrossRef]
  21. C. M. de Sterke and J. E. Sipe, “Polarization instability in a waveguide geometry,” Opt. Lett.16, 202–204 (1991). [CrossRef] [PubMed]
  22. Y. Wang and W. Wang, “Nonlinear optical pulse coupling dynamics,” J. Lightwave Technol.24, 2458–2464 (2006). [CrossRef]
  23. Y. S. Kivshar, “Switching dynamics of solitons in fiber directional couplers,” Opt. Lett.18, 7–9 (1993). [CrossRef] [PubMed]
  24. D. C. Hutchings, J. S. Aitchison, and J. M. Arnold, “Nonlinear refractive coupling and vector solitons in anisotropic cubic media,” J. Opt. Soc. Am. B14, 869–879 (1997). [CrossRef]
  25. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett.81, 3383–3386 (1998). [CrossRef]
  26. U. Peschel, R. Morandotti, J. M. Arnold, J. S. Aitchison, H. S. Eisenberg, Y. Silberberg, T. Pertsch, and F. Lederer, “Optical discrete solitons in waveguide arrays. 2. dynamic properties,” J. Opt. Soc. Am. B19, 2637–2644 (2002). [CrossRef]
  27. K. R. Khan, T. X. Wu, D. N. Christodoulides, and G. I. Stegeman, “Soliton switching and multi-frequency generation in a nonlinear photonic crystal fiber coupler,” Opt. Express16, 9417–9428 (2008). [CrossRef] [PubMed]
  28. C. C. Yang, “All-optical ultrafast logic gates that use asymmetric nonlinear directional couplers,” Opt. Lett.16, 1641–1643 (1991). [CrossRef] [PubMed]
  29. T. Fujisawa and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide couplers,” J. Opt. Soc. Am. B23, 684–691 (2006). [CrossRef]
  30. W. Fraga, J. Menezes, M. da Silva, C. Sobrinho, and A. Sombra, “All optical logic gates based on an asymmetric nonlinear directional coupler,” Opt. Commun.262, 32–37 (2006). [CrossRef]
  31. D. C. Hutchings and B. S. Wherrett, “Theory of the anisotropy of ultrafast nonlinear refraction in zinc-blende semiconductors,” Phys. Rev. B52, 8150–8159 (1995). [CrossRef]
  32. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  33. S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express17, 2298–2318 (2009). [CrossRef] [PubMed]
  34. J. B. Driscoll, X. Liu, S. Yasseri, I. Hsieh, J. I. Dadap, and R. M. Osgood, “Large longitudinal electric fields (Ez) in silicon nanowire waveguides,” Opt. Express17, 2797–2804 (2009). [CrossRef] [PubMed]
  35. B. A. Daniel and G. P. Agrawal, “Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects,” J. Opt. Soc. Am. B27, 956–965 (2010). [CrossRef]
  36. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29, 1209–1211 (2004). [CrossRef] [PubMed]
  37. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express12, 4094–4102 (2004). [CrossRef] [PubMed]
  38. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photon.3, 216–219 (2009). [CrossRef]
  39. W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “Tunable wavelength conversion by XPM in a silicon nanowire, and the potential for XPM-multicasting,” J. Lightwave Technol.28, 2499–2511 (2010). [CrossRef]
  40. R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett.36, 1263–1265 (2011). [CrossRef] [PubMed]
  41. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davis, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon.3, 139–143 (2009). [CrossRef]
  42. X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express18, 26635–26646 (2010). [CrossRef] [PubMed]
  43. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photon.5, 141–148 (2011).
  44. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, “2R-regenerative all-optical switch based on a highly nonlinear holey fiber,” Opt. Lett.26, 1233–1235 (2001). [CrossRef]
  45. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12, 5082–5087 (2004). [CrossRef] [PubMed]
  46. S. Afshar V., W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett.34, 3577–3579 (2009). [CrossRef] [PubMed]
  47. G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys.107, 043108 (2010). [CrossRef]
  48. F. Poletti, X. Feng, G. M. Ponzo, M. N. Petrovich, W. H. Loh, and D. J. Richardson, “All-solid highly nonlinear singlemode fibers with a tailored dispersion profile,” Opt. Express19, 66–80 (2011). [CrossRef] [PubMed]
  49. M. D. Turner, T. M. Monro, and S. Afshar V., “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part II: Stimulated Raman scattering,” Opt. Express17, 11565–11581 (2009). [CrossRef] [PubMed]
  50. W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear polarization bistability in optical nanowires,” Opt. Lett.36, 588–590 (2011). [CrossRef] [PubMed]
  51. S. Afshar V., W. Q. Zhang, and T. M. Monro, “Structurally-based nonlinear birefringence in waveguides with subwavelength structures and high index materials,” in “ACOFT 2009 Proceeding,” (Australian Optical Society, 2009), 374–375.
  52. E. Mägi, L. Fu, H. Nguyen, M. Lamont, D. Yeom, and B. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express15, 10324–10329 (2007). [CrossRef] [PubMed]
  53. S. Coleman, “Classical lumps and their quantum descendents,” in New Phenomena in Subnuclear Physics Ed. A. Zichichi (New York, 1977), 185–264.
  54. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: from Fibers to Photonic Crystals (Academic Press, 2003)
  55. W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear self-flipping of polarization states in asymmetric waveguides,” arXiv:1203.6416
  56. W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear polarization self-flipping and optical switching,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011, (Optical Society of America, 2011), paper C370.
  57. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press, 1965).
  58. W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “New regimes of polarization bistability in linear birefringent waveguides and optical logic gates,” in Nonlinear Photonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper NThD4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited