OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14547–14555

Generation of three-dimensional entangled state between a single atom and a Bose-Einstein condensate via adiabatic passage

Li-Bo Chen, Peng Shi, Chun-Hong Zheng, and Yong-Jian Gu  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 14547-14555 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (830 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Inspired by a recently experiment by M. Lettner et al. [Phys. Rev. Lett. 106, 210503 (2011)], we propose a robust scheme to prepare three-dimensional entanglement state between a single atom and a Bose-Einstein condensate (BEC) via stimulated Raman adiabatic passage (STIRAP) technique. The atomic spontaneous radiation, the cavity decay, and the fiber loss are efficiently suppressed by the engineering adiabatic passage. Our strictly numerical simulation shows our proposal is good enough to demonstrate the generation of three-dimensional entanglement with high fidelity and within the current experimental technology.

© 2012 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: March 2, 2012
Revised Manuscript: April 16, 2012
Manuscript Accepted: May 7, 2012
Published: June 14, 2012

Li-Bo Chen, Peng Shi, Chun-Hong Zheng, and Yong-Jian Gu, "Generation of three-dimensional entangled state between a single atom and a Bose-Einstein condensate via adiabatic passage," Opt. Express 20, 14547-14555 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.70(13), 1895–1899 (1993). [CrossRef] [PubMed]
  2. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett.69(20), 2881–2884 (1992). [CrossRef] [PubMed]
  3. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67(6), 661–663 (1991). [CrossRef] [PubMed]
  4. T. Durt, D. Kaszlikowski, J. -L. Chen, and L. C. Kwek, “Security of quantum key distributions with entangled qudits,” Phys. Rev. A69(3), 032313 (2004). [CrossRef]
  5. D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett.85(21), 4418–4421 (2000). [CrossRef] [PubMed]
  6. D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett.88(4), 040404 (2002). [CrossRef] [PubMed]
  7. M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, “Exceeding the classical capacity limit in a quantum optical channel,” Phys. Rev. Lett.90(16), 167906 (2003). [CrossRef] [PubMed]
  8. A. B. Klimov, R. Guzmán, J. C. Retamal, and C. Saavedra, “Qutrit quantum computer with trapped ions,” Phys. Rev. A67(6), 062313 (2003). [CrossRef]
  9. I. E. Linington and N. V. Vitanov, “Robust creation of arbitrary-sized Dicke states of trapped ions by global addressing,” Phys. Rev. A77(1), 010302(R) (2008). [CrossRef]
  10. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett.89(24), 240401 (2002). [CrossRef] [PubMed]
  11. B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien, K. J. Resch, A. Gilchrist, and A. G. White, “Manipulating biphotonic qutrits,” Phys. Rev. Lett.100(6), 060504 (2008). [CrossRef] [PubMed]
  12. A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys.7(9), 677–680 (2011). [CrossRef]
  13. X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A67(4), 044301 (2003). [CrossRef]
  14. G. W. Lin, M. Y. Ye, L. B. Chen, Q. H. Du, and X. M. Lin, “Generation of the singlet state for three atoms in cavity QED,” Phys. Rev. A76(1), 014308 (2007). [CrossRef]
  15. S. Y. Ye, Z. R. Zhong, and S. B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A77(1), 014303 (2008). [CrossRef]
  16. L. B. Chen, P. Shi, Y. J. Gu, L. Xie, and L. Z. Ma, “Generation of atomic entangled states in a bi-mode cavity via adiabatic passage,” Opt. Commun.284(20), 5020–5023 (2011). [CrossRef]
  17. C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature404(6775), 247–255 (2000). [CrossRef] [PubMed]
  18. H. J. Kimble, “The quantum internet,” Nature453(7198), 1023–1030 (2008). [CrossRef] [PubMed]
  19. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett.78(16), 3221–3224 (1997). [CrossRef]
  20. T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett.79(26), 5242–5245 (1997). [CrossRef]
  21. S. J. van Enk, H. J. Kimble, J. I. Cirac, and P. Zoller, “Quantum communication with dark photons,” Phys. Rev. A59(4), 2659–2664 (1999). [CrossRef]
  22. S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett.91(17), 177901 (2003). [CrossRef] [PubMed]
  23. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett.96(1), 010503 (2006). [CrossRef] [PubMed]
  24. Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A75(1), 012324 (2007). [CrossRef]
  25. X. Y. Lü, J. B. Liu, C. L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A78(3), 032305 (2008). [CrossRef]
  26. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science298(5597), 1372–1377 (2002). [CrossRef] [PubMed]
  27. J. Oreg, F. T. Hioe, and J. H. Eberly, “Adiabatic following in multilevel systems,” Phys. Rev. A29(2), 690–697 (1984). [CrossRef]
  28. U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett.149(5–6), 463–468 (1988). [CrossRef]
  29. U. Gaubatz, P. Rudecki, S. Sciemann, and K. Bergmann, “Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results,” J. Chem. Phys.92(9), 5363–5376 (1990). [CrossRef]
  30. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys.70(3), 1003–1025 (1998). [CrossRef]
  31. J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A40(11), 6741–6744 (1989). [CrossRef] [PubMed]
  32. R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun.155(1–3), 144–154 (1998) [CrossRef]
  33. H. Theuer, R. G. Unanyan, C. Habscheid, K. Klein, and K. Bergmann, “Novel laser controlled variable matter wave beamsplitter,” Opt. Express4(2), 77–83 (1999). [CrossRef] [PubMed]
  34. X. L. Song, L. Wang, R. Z. Lin, Z. H. Kang, X. Li, Y. Jiang, and J. Y. Gao, “Observation of CARS signal via maximal atomic coherence prepared by F-STIRAP in a three-level atomic system,” Opt. Express15(12), 7499–7505 (2007). [CrossRef] [PubMed]
  35. R. G. Unanyan, N. V. Vitanov, and K. Bergmann, “Preparation of entangled states by adiabatic passage,” Phys. Rev. Lett.87(13), 137902 (2001). [CrossRef] [PubMed]
  36. R. G. Unanyan, M. Fleischhauer, N. V. Vitanov, and Klaas Bergmann, “Entanglement generation by adiabatic navigation in the space of symmetric multiparticle states,” Phys. Rev. A66(4), 042101 (2002). [CrossRef]
  37. M. Amniat-Talab, S. Guérin, N. Sangouard, and H. R. Jauslin, “Atom-photon, atom-atom, and photon-photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A71(2), 023805 (2005). [CrossRef]
  38. M. Amniat-Talab, S. Guérin, and H. R. Jauslin, “Decoherence-free creation of atom-atom entanglement in a cavity via fractional adiabatic passage,” Phys. Rev. A72(1), 012339 (2005). [CrossRef]
  39. N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B32(18), 4535–4546 (1999). [CrossRef]
  40. Z. Kis and E. Paspalakis, “Arbitrary rotation and entanglement of flux SQUID qubits,” Phys. Rev. B69(2), 024510 (2004). [CrossRef]
  41. J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B40(23), 4503–4512 (2007). [CrossRef]
  42. J. Klein, F. Beil, and T. Halfmann, “Robust population transfer by stimulated raman adiabatic passage in a Pr3+ : Y2SiO5 crystal,” Phys. Rev. Lett.99(11), 113003 (2007). [CrossRef] [PubMed]
  43. L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A76(6), 062304 (2007). [CrossRef]
  44. Y. Yoshikawa, K. Nakayama, Y. Torii, and T. Kuga, “Long storage time of collective coherence in an optically trapped Bose-Einstein condensate,” Phys. Rev. A79(2), 025601 (2009). [CrossRef]
  45. S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “A Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A85(2), 022318 (2012). [CrossRef]
  46. M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe, “Remote entanglement between a single atom and a Bose-Einstein condensate,” Phys. Rev. Lett.106(21), 210503 (2011). [CrossRef] [PubMed]
  47. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature450(7167), 268–271 (2007). [CrossRef] [PubMed]
  48. J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, “Bose-Einstein condensation of photons in an optical microcavity,” Nature468(7323), 545–548 (2010). [CrossRef] [PubMed]
  49. T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science317(5837), 488–490 (2007). [CrossRef] [PubMed]
  50. B. Weber, H. P. Specht, T. Mueller, J. Bochmann, M. Muecke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped Atom,” Phys. Rev. Lett.102(3), 030501 (2009). [CrossRef] [PubMed]
  51. S. B. Zheng, “Multi-atom entanglement engineering and phase-covariant cloning via adiabatic passage,” J. Opt. B: Quantum Semiclass. Opt.7(5), 139–141 (2005). [CrossRef]
  52. P. Král, I. Thanopulos, and M. Shapiro, “Colloquium: Coherently controlled adiabatic passage,” Rev. Mod. Phys.79(1), 53–77 (2007). [CrossRef]
  53. H. Goto and K. Ichimura, “Multiqubit controlled unitary gate by adiabatic passage with an optical cavity,” Phys. Rev. A70(1), 012305 (2004). [CrossRef]
  54. Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photon.6(1), 56–61 (2012). [CrossRef]
  55. S. Leslie, N. Shenvi, K. R. Brown, D. M. Stamper-Kurn, and K. B. Whaley, “Transmission spectrum of an optical cavity containing N atoms,” Phys. Rev. A69(4), 043805 (2004). [CrossRef]
  56. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature450(7167), 272–276 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited