OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14564–14572

Tandem organic light-emitting diodes with KBH4 doped 9,10-bis(3-(pyridin-3-yl)phenyl) anthracene connected to the charge generation layer

Lian Duan, Taiju Tsuboi, Yong Qiu, Yanrui Li, and Guohui Zhang  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14564-14572 (2012)
http://dx.doi.org/10.1364/OE.20.014564


View Full Text Article

Enhanced HTML    Acrobat PDF (967 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tandem organic light emitting diodes (OLEDs) are ideal for lighting applications due to their low working current density at high brightness. In this work, we have studied an efficient electron transporting layer of KBH4 doped 9,10-bis(3-(pyridin-3-yl)phenyl)anthracene (DPyPA) which is located adjacent to charge generation layer of MoO3/NPB. The excellent transporting property of the DPyPA:KBH4 layer helps the tandem OLED to achieve a lower voltage than the tandem device with the widely used tris-(8-hydroxyquinoline)aluminum:Li. For the tandem white OLED with a fluorescent blue unit and a phosphorescent yellow unit, we’ve achieved a high current efficiency of 75 cd/A, which can be further improved to 120 cd/A by attaching a diffuser layer.

© 2012 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(230.4170) Optical devices : Multilayers

ToC Category:
Light-Emitting Diodes

History
Original Manuscript: October 25, 2011
Revised Manuscript: December 22, 2011
Manuscript Accepted: January 3, 2012
Published: June 14, 2012

Citation
Lian Duan, Taiju Tsuboi, Yong Qiu, Yanrui Li, and Guohui Zhang, "Tandem organic light-emitting diodes with KBH4 doped 9,10-bis(3-(pyridin-3-yl)phenyl) anthracene connected to the charge generation layer," Opt. Express 20, 14564-14572 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-14564


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. S. Liao and K. P. Klubek, “Power efficiency improvement in a tandem organic light-emitting diode,” Appl. Phys. Lett.92(22), 223311 (2008). [CrossRef]
  2. Q. Wang, J. Q. Ding, Z. Q. Zhang, D. G. Ma, Y. X. Cheng, L. X. Wang, and F. S. Wang, “A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer,” J. Appl. Phys.105(7), 076101 (2009). [CrossRef]
  3. H.-D. Lee, S. J. Lee, K. Y. Lee, B. S. Kim, S. H. Lee, H. D. Bae, and Y. H. Tak, “High Efficiency Tandem Organic Light-Emitting Diodes Using Interconnecting Layer,” Jpn. J. Appl. Phys.48(8), 082101 (2009). [CrossRef]
  4. T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yokoi, and J. Kido, “Multiphoton organic EL device having charge generation layer,” SID Symposium Digest of Technical Papers 34, 979–981 (2003).
  5. M. Terai and T. Tsutsui, “Electric-field-assisted bipolar charge generation from internal charge separation zone composed of doped organic bilayer,” Appl. Phys. Lett.90(8), 083502 (2007). [CrossRef]
  6. M. Ho, T. M. Chen, P. C. Yeh, S. W. Hwang, and C. H. Chen, “Highly efficient p-i-n white organic light emitting devices with tandem structure,” Appl. Phys. Lett.91(23), 233507 (2007). [CrossRef]
  7. S. Hamwi, J. Meyer, M. Kröger, T. Winkler, M. Witte, T. Riedl, A. Kahn, and W. Kowalsky, “The role of transition metal oxides in charge-generation layers for stacked organic light-emitting diodes,” Adv. Funct. Mater.20(11), 1762–1766 (2010). [CrossRef]
  8. T. Chiba, Y.-J. Pu, R. Miyazaki, K. Nakayama, H. Sasabe, and J. Kido, “Ultra-high efficiency by multiple emission from stacked organic light-emitting devices,” Org. Electron.12(4), 710–715 (2011). [CrossRef]
  9. L. S. Liao, W. K. Slusarek, T. K. Hatwar, M. L. Ricks, and D. L. Comfort, “Tandem organic light-emitting mode using hexaazatriphenylene hexacarbonitrile in the intermediate connector,” Adv. Mater. (Deerfield Beach Fla.)20(2), 324–329 (2008). [CrossRef]
  10. M. Yokoyama, S. H. Su, C. C. Hou, C. T. Wu, and C. H. Kung, “Highly efficient white organic light-emitting diodes with a p-i-n tandem structure,” Jpn. J. Appl. Phys.50(4), 04DK06 (2011). [CrossRef]
  11. M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of connecting unit architecture on the performance of tandem organic light-emitting devices,” Adv. Funct. Mater.17(14), 2509–2514 (2007). [CrossRef]
  12. L. Duan, D. Zhang, Y. Li, G. Zhang, and Y. Qiu, “Improving the performance of OLEDs by using a low-temperature-evaporable n-dopant and a high-mobility electron transport host,” Opt. Express19(S6Suppl 6), A1265–A1271 (2011). [CrossRef] [PubMed]
  13. T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett.76(10), 1243–1245 (2000). [CrossRef]
  14. S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys.91(5), 3324 (2002). [CrossRef]
  15. H. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys.96(3), 1649–1651 (2004). [CrossRef]
  16. T. Nakamura, N. Tsutsumi, N. Juni, and H. Fujii, “Improvement of coupling-out efficiency in organic electroluminescent devices by addition of a diffusive layer,” J. Appl. Phys.96(11), 6016 (2004). [CrossRef]
  17. Y. H. Cheng, J. L. Wu, C. H. Cheng, K. C. Syao, and M. C. M. Lee, “Enhanced light outcoupling in a thin film by texturing meshed surfaces,” Appl. Phys. Lett.90(9), 091102 (2007). [CrossRef]
  18. T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, and M. Yokoyama, “Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer,” Adv. Mater. (Deerfield Beach Fla.)13(15), 1149–1152 (2001). [CrossRef]
  19. Q. Liu, D. Zhang, L. Duan, G. Zhang, L. Wang, Y. Cao, and Y. Qiu, “Thermally decomposable kbh4 as an efficient electron injection material for organic light-emitting diodes,” Jpn. J. Appl. Phys.48(8), 080205 (2009). [CrossRef]
  20. Y. Sun, L. Duan, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “A pyridine-containing anthracene derivative with high electron and hole mobilities for highly efficient and stable fluorescent organic light-emitting diodes,” Adv. Funct. Mater.21(10), 1881–1886 (2011). [CrossRef]
  21. J. H. Lee, M. H. Wu, C. C. Chao, H. L. Chen, and M. K. Leung, “High efficiency and long lifetime OLED based on a metal-doped electron transport layer,” Chem. Phys. Lett.416(4-6), 234–237 (2005). [CrossRef]
  22. W. Brütting, S. Berleb, and A. G. Mückl, “Space-charge limited conduction with a field and temperature dependent mobility in Alq light-emitting devices,” Synth. Met.122(1), 99–104 (2001). [CrossRef]
  23. T. Tsuboi, S.-W. Liu, M.-F. Wu, and C.-T. Chen, “Spectroscopic and electrical characteristics of highly efficient tetraphenylsilane-carbazole organic compound as host material for blue organic light emitting diodes,” Org. Electron.10(7), 1372–1377 (2009). [CrossRef]
  24. G. Paasch, A. Nesterov, and S. Scheinert, “Simulation of organic light emitting diodes: influence of charges localized near the electrodes,” Synth. Met.139(2), 425–432 (2003). [CrossRef]
  25. C.-C. Liu, S.-H. Liu, K.-C. Tien, M.-H. Hsu, H.-W. Chang, C.-K. Chang, C.-J. Yang, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with diffusers for simultaneous enhancement of efficiencies and viewing characteristics,” Appl. Phys. Lett.94(10), 103302 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited