OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14584–14595

Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution

Sheng-Fu Lin, Chih-Ming Wang, Ting-Jou Ding, Ya-Lun Tsai, Tsung-Hsun Yang, Wen-Yih Chen, and Jenq-Yang Chang  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 14584-14595 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1075 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, a metal layer assisted guide mode resonance (MaGMR) device with high sensitivity is proposed for bioanalytical applications and its functioning is experimentally proved. We find that the reflection spectra present a unique inversed response. The resonance mechanism is also discussed. Numerical calculation results indicate that the high sensitivity performance of MaGMR comes from the strongly asymmetric resonance modal profile and low propagation angle inside the waveguide. There is a one-fold enhancement of the evanescent wave in the analytes region compared to typical GMR. According to the experimental results, the proposed MaGMR achieved a bulk sensitivity of 376.78nm/RIU in fundamental TM mode resonating at 0.809μm with the first diffraction angle. Experiment results show a 264.78% enhancement in the sensitivity compared to that of the typical GMR sensor in the same resonance conditions of TM mode.

© 2012 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.1950) Optical devices : Diffraction gratings
(260.3910) Physical optics : Metal optics
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: May 1, 2012
Revised Manuscript: June 4, 2012
Manuscript Accepted: June 4, 2012
Published: June 15, 2012

Sheng-Fu Lin, Chih-Ming Wang, Ting-Jou Ding, Ya-Lun Tsai, Tsung-Hsun Yang, Wen-Yih Chen, and Jenq-Yang Chang, "Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution," Opt. Express 20, 14584-14595 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Zaninotto, S. Altinier, M. Lachin, L. Celegon, and M. Plebani, “Strategies for the early diagnosis of acute myocardial infarction using biochemical markers,” Am. J. Clin. Pathol.111(3), 399–405 (1999). [PubMed]
  2. L. Babuin and A. S. Jaffe, “Troponin: the biomarker of choice for the detection of cardiac injury,” CMAJ173(10), 1191–1202 (2005). [CrossRef] [PubMed]
  3. M. Esteller and J. G. Herman, “Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours,” J. Pathol.196(1), 1–7 (2002). [CrossRef] [PubMed]
  4. C. Ayela, F. Roquet, L. Valera, C. Granier, L. Nicu, and M. Pugnière, “Antibody–antigenic peptide interactions monitored by SPR and QCM-D,” Biosens. Bioelectron.22(12), 3113–3119 (2007). [CrossRef] [PubMed]
  5. M. A. Cooper and V. T. Singleton, “A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions,” J. Mol. Recognit.20(3), 154–184 (2007). [CrossRef] [PubMed]
  6. E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, “Label-free immunodetection with CMOS-compatible semiconducting nanowires,” Nature445(7127), 519–522 (2007). [CrossRef] [PubMed]
  7. S. C. Hung, Y. L. Wang, B. Hicks, S. J. Pearton, D. M. Dennis, F. Ren, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, and G. C. Chi, “Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett.92(19), 193903 (2008). [CrossRef]
  8. C. Y. Hsiao, C. H. Lin, C. H. Hung, C. J. Su, Y. R. Lo, C. C. Lee, H. C. Lin, F. H. Ko, T. Y. Huang, and Y. S. Yang, “Novel poly-silicon nanowire field effect transistor for biosensing application,” Biosens. Bioelectron.24(5), 1223–1229 (2009). [CrossRef] [PubMed]
  9. F. Fernández, K. Hegnerová, M. Piliarik, F. Sanchez-Baeza, J. Homola, and M. P. Marco, “A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples,” Biosens. Bioelectron.26(4), 1231–1238 (2010). [CrossRef] [PubMed]
  10. K.-L. Lee, S.-H. Wu, C.-W. Lee, and P.-K. Wei, “Sensitive biosensors using Fano resonance in single gold nanoslit with periodic grooves,” Opt. Express19(24), 24530–24539 (2011). [CrossRef] [PubMed]
  11. Y. Panitchob, G. S. Murugan, M. N. Zervas, P. Horak, S. Berneschi, S. Pelli, G. Nunzi Conti, and J. S. Wilkinson, “Whispering gallery mode spectra of channel waveguide coupled microspheres,” Opt. Express16(15), 11066–11076 (2008). [CrossRef] [PubMed]
  12. A. Schweinsberg, S. Hocde, N. N. Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator,” Sens. Actuators B Chem.123(2), 727–732 (2007). [CrossRef]
  13. S. F. Lin, T. J. Ding, J. T. Liu, C. C. Lee, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A guided mode resonance aptasensor for thrombin detection,” Sensors (Basel)11(9), 8953–8965 (2011). [CrossRef] [PubMed]
  14. M. El Beheiry, V. Liu, S. H. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18(22), 22702–22714 (2010). [CrossRef] [PubMed]
  15. C. J. Choi, I. D. Block, B. Bole, D. Dralle, and B. T. Cunningham, “Label-Free Photonic Crystal Biosensor Integrated Microfluidic Chip for Determination of Kinetic Reaction Rate Constants,” IEEE Sens. J.9(12), 1697–1704 (2009). [CrossRef]
  16. I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem.120(1), 187–193 (2006). [CrossRef]
  17. D. D. Wawro, S. Tibuleac, R. Magnusson, and H. Liu, “Optical fiber endface biosensor based on resonances in dielectric waveguide gratings,” Proc. SPIE3911, 86–94 (2000). [CrossRef]
  18. H. Kikuta, N. Maegawa, A. Mizutani, K. Iwata, and H. Toyota, “Refractive index sensor with a guided-mode resonant grating filter,” Proc. SPIE4416, 219–222 (2001). [CrossRef]
  19. B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem.87(2), 365–370 (2002). [CrossRef]
  20. N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett.89(2), 023901 (2006). [CrossRef]
  21. W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem.131(1), 279–284 (2008). [CrossRef]
  22. I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J.8(3), 274–280 (2008). [CrossRef]
  23. S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. (to be published).
  24. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-Mode Resonances in Planar Dielectric-Layer Diffraction Gratings,” J. Opt. Soc. Am. A7(8), 1470–1474 (1990). [CrossRef]
  25. D. W. Lynch and W. R. Hunter, “Gold (Au)”, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
  26. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express12(23), 5661–5674 (2004). [CrossRef] [PubMed]
  27. R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase gratings with arbitrary grating space,” J. Opt. Soc. Am.68(6), 806–809 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited