OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14663–14682

Self-organization approach for THz polaritonic metamaterials

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. García de Abajo, E. N. Economou, and C. M. Soukoulis  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 14663-14682 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (5467 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we discuss the fabrication and the electromagnetic (EM) characterization of anisotropic eutectic metamaterials, consisting of cylindrical polaritonic LiF rods embedded in either KCl or NaCl polaritonic host. The fabrication was performed using the eutectics directional solidification self-organization approach. For the EM characterization the specular reflectance at far infrared, between 3 THz and 11 THz, was measured and also calculated by numerically solving Maxwell equations, obtaining good agreement between experimental and calculated spectra. Applying an effective medium approach to describe the response of our samples, we predicted a range of frequencies in which most of our systems behave as homogeneous anisotropic media with a hyperbolic dispersion relation, opening thus possibilities for using them in negative refractive index and imaging applications at THz range.

© 2012 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(220.4000) Optical design and fabrication : Microstructure fabrication
(160.1245) Materials : Artificially engineered materials
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: January 12, 2012
Revised Manuscript: April 19, 2012
Manuscript Accepted: April 23, 2012
Published: June 15, 2012

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. García de Abajo, E. N. Economou, and C. M. Soukoulis, "Self-organization approach for THz polaritonic metamaterials," Opt. Express 20, 14663-14682 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002). [CrossRef] [PubMed]
  2. S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction between Terahertz radiation and biological tissue,” Phys. Med. Biol.46, R101–R112 (2001). [CrossRef] [PubMed]
  3. D. L. Woolard, J. O. Jensen, R. J. Hwu, and M. S. Shur, Terahertz Science and Technology for Military and Security Applications (World Scientific Publishing Co. Pte. Ltd., 2007). [CrossRef]
  4. T. Edwards, Gigahertz and Terahertz Technologies for Broadband Communications (Artech House Inc., 2000).
  5. V. Minier, G. Durand, P.-O. Lagage, M. Talvard, T. Travouillon, M. Busso, and G. Tosti, “Submillimetre/terahertz astronomy at dome C with CEA filled bolometer array,” EAS Publications Series25, 321–326 (2007). [CrossRef]
  6. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp.10, 509–514 (1968). [CrossRef]
  7. J. B. Pendry, “Negative refraction makes perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000). [CrossRef] [PubMed]
  8. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw.47, 2075–2084 (1999). [CrossRef]
  9. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter10, 4785–4809 (1998). [CrossRef]
  10. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000). [CrossRef] [PubMed]
  11. S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.: Condens. Matter14, 4035–4044 (2002). [CrossRef]
  12. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett.99, 107401 (2007). [CrossRef] [PubMed]
  13. L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys.99, 043102 (2006). [CrossRef]
  14. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Sanders College Publishing/Harcourt Brace, 1976).
  15. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter17, 3717–3734 (2005). [CrossRef]
  16. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003). [CrossRef] [PubMed]
  17. M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” App. Phys. Lett.94, 151105 (2009). [CrossRef]
  18. M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, L. Heng, and E. E. Narimanov, “Bulk metamaterial with hyperbolic dispersion,” Conference on lasers and electro-optics/International quantum electronics conference, OSA technical digest (CD) (Optical Society of America, 2009), paper JWC2. [PubMed]
  19. T. Tumkur, G. Zhu, P. Black, Yu. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” App. Phys. Lett.99, 151115 (2011). [CrossRef]
  20. A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, and C. M. Soukoulis, “Electromagnetic response of anisotropic eutectic metamaterials in THz range,” AIP Conf. Proc.1291, 148–150 (2010). [CrossRef]
  21. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express15, 15886–15891 (2007). [CrossRef] [PubMed]
  22. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007). [CrossRef] [PubMed]
  23. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express14, 8247–8256 (2006). [CrossRef] [PubMed]
  24. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B74, 075103 (2006). [CrossRef]
  25. A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B79, 245127 (2009). [CrossRef]
  26. G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express16, 7460–7470 (2008). [CrossRef] [PubMed]
  27. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7, 31–37 (2008). [CrossRef]
  28. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008). [CrossRef] [PubMed]
  29. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009). [CrossRef] [PubMed]
  30. D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater.22, 3171–3175 (2010). [CrossRef] [PubMed]
  31. C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett.99, 017401 (2007). [CrossRef] [PubMed]
  32. V. M. Orera, J. I. Peña, A. Larrea, R. I. Merino, and P. B. Oliete, “Engineered self-organized microstructures using directional solidification of eutectics,” Ceramics Trans.225, 185–196 (2011).
  33. V. M. Orera and A. Larrea, “NaCl-assisted growth of micrometer-wide long single crystalline fluoride fibres,” Opt. Mater.27, 1726–1729 (2005). [CrossRef]
  34. D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization,” Adv. Funct. Mater.20, 1116–1124 (2010). [CrossRef]
  35. J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci.51, 711–809 (2006). [CrossRef]
  36. V. M. Orera, J. I. Peña, P. B. Oliete, R. I. Merino, and A. Larrea, “Growth of eutectic ceramic structures by directional solidification methods,” J. Cryst. Growth (2011), . [CrossRef]
  37. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Inc., 1985).
  38. V. M. Orera, A. Larrea, R. I. Merino, M. A. Rebolledo, J. A. Valles, R. Gotor, and J. I. Peña, “Novel photonic materials made from ionic eutectic compounds,” Acta Phys. Slovaca55, 261–269 (2005).
  39. A. Larrea and V. M. Orera, “Porous crystal structures obtained from directionally solidified eutectic precursors,” J. Cryst. Growth300, 387–393 (2007). [CrossRef]
  40. A. Larrea, L. Contreras, R. I. Merino, J. Llorca, and V. M. Orera, “Microstructure and physical properties of CaF2-MgO eutectics produced by the Bridgman method,” J. Mat. Res.15, 1314–1319 (2000). [CrossRef]
  41. S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B84, 035128 (2011). [CrossRef]
  42. J. C. Maxwell Garnett, “Colours in metal glasses and metal films,” Phil. Trans. R. Soc. London Ser. A203, 385–420 (1904).
  43. A. Sihvola, Metamaterials Handbook. Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), Chap. 9.
  44. A. Kirchner, K. Busch, and C. M. Soukoulis, “Transport properties of random arrays of dielectric cylinders,” Phys. Rev. B57, 277–288 (1998). [CrossRef]
  45. J. A. Straton, Electromagnetic Theory (Wiley, 2007).
  46. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B39, 9852–9858 (1989). [CrossRef]
  47. R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun.182, 273–279 (2000). [CrossRef]
  48. P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B67, 113103 (2003). [CrossRef]
  49. K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B68, 075209 (2003). [CrossRef]
  50. K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Field expulsion and reconfiguration in polaritonic photonic crystals,” Phys. Rev. Lett.90, 196402 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited